首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poliovirus genomes which contain small regions of the human immunodeficiency virus type 1 (HIV-1) gag, pol, and env genes substituted in frame for the P1 capsid region replicate and express HIV-1 proteins as fusion proteins with the P1 capsid precursor protein upon transfection into cells (W. S. Choi, R. Pal-Ghosh, and C. D. Morrow, J. Virol. 65:2875-2883, 1991). Since these genomes, referred to as replicons, do not express capsid proteins, a complementation system was developed to encapsidate the genomes by providing P1 capsid proteins in trans from a recombinant vaccinia virus, VV-P1. Virus stocks of encapsidated replicons were generated after serial passage of the replicon genomes into cells previously infected with VV-P1 (D. C. Porter, D. C. Ansardi, W. S. Choi, and C. D. Morrow, J. Virol. 67:3712-3719, 1993). Using this system, we have further defined the role of the P1 region in viral protein expression and RNA encapsidation. In the present study, we constructed poliovirus replicons which contain the complete 1,492-bp gag gene of HIV-1 substituted for the entire P1 region of poliovirus. To investigate whether the VP4 coding region was required for the replication and encapsidation of poliovirus RNA, a second replicon in which the complete gag gene was substituted for the VP2, VP3, and VP1 capsid sequences was constructed. Transfection of replicon RNA with and without the VP4 coding region into cells resulted in similar levels of expression of the HIV-1 Gag protein and poliovirus 3CD protein, as indicated by immunoprecipitation using specific antibodies. Northern (RNA) blot analysis of RNA from transfected cells demonstrated comparable levels of RNA replication for each replicon. Transfection of the replicon genomes into cells infected with VV-P1 resulted in the encapsidation of the genomes; serial passage in the presence of VV-P1 resulted in the generation of virus stocks of encapsidated replicons. Analysis of the levels of protein expression and encapsidated replicon RNA from virus stocks after 21 serial passages of the replicon genomes with VV-P1 indicated that the replicon which contained the VP4 coding region was present at a higher level than the replicon which contained a complete substitution of the P1 capsid sequences. These differences in encapsidation, though, were not detected after only two serial passages of the replicons with VV-P1 or upon coinfection and serial passage with type 1 Sabin poliovirus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The use of recombinant viruses for the expression of a wide array of foreign proteins has become commonplace during the last few years. Recently, we have described the construction and characterization of chimeric human immunodeficiency virus type 1 (HIV-1)-poliovirus genomes in which the gag and pol genes of HIV-1 have been substituted for the VP2 and VP3 capsid genes of the P1 capsid precursor region of poliovirus. Transfection of these RNAs into tissue culture cells results in replication of the RNA genome and expression of HIV-1-P1 fusion proteins (W. S. Choi, R. Pal-Ghosh, and C. D. Morrow, J. Virol. 65:2875-2883, 1991). Here we report on the encapsidation and amplification of the minireplicons to obtain sufficient quantities for biological characterization. To do this, HIV-1-poliovirus minireplicon genomes containing the gag or pol gene were transfected into cells previously infected with a recombinant vaccinia virus (VV-P1) which expresses the poliovirus capsid precursor protein, P1 (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 65:2088-2092, 1991). The chimeric minireplicons replicated and expressed the appropriate HIV-1-P1 fusion proteins as determined by immunoprecipitation with HIV-1-specific antibodies. The encapsidated genomes were isolated by ultracentrifugation. Reinfection of cells with the encapsidated chimeric RNA genomes resulted in expression of the HIV-1-Gag-P1 or HIV-1-Pol-P1 fusion protein. Serial passaging of the encapsidated chimeric HIV-1-poliovirus genomes was accomplished by coinfecting cells with the encapsidated minireplicons and VV-P1, resulting in stocks of the encapsidated minireplicons. Northern (RNA) blot analysis of passaged material revealed that no detectable deletions of the chimeric genomes occurred during 14 serial passages. Infection of cells by the encapsidated minireplicons was blocked by antipoliovirus antibodies. Coinfection of cells with encapsidated minireplicons and type 1 Sabin poliovirus resulted in encapsidation of the chimeric genomes by wild-type poliovirus as measured by immunoprecipitation of the HIV-1-P1 fusion proteins with HIV-1-specific antibodies. The results of this study demonstrate the encapsidation of poliovirus minireplicons which express foreign proteins and point to the future use of this system as a potential vaccine vector.  相似文献   

3.
X Wu  J A Conway  J Kim    J C Kappes 《Journal of virology》1994,68(10):6161-6169
Viral protein X (Vpx) is a human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus accessory protein that is packaged into virions in molar amounts equivalent to Gag proteins. To delineate the processes of virus assembly that mediate Vpx packaging, we used a recombinant vaccinia virus-T7 RNA polymerase system to facilitate Gag protein expression, particle assembly, and extracellular release. HIV genes were placed under control of the bacteriophage T7 promoter and transfected into HeLa cells expressing T7 RNA polymerase. Western immunoblot analysis detected p55gag and its cleavage products p39 and p27 in purified particles derived by expression of gag and gag-pol, respectively. In trans expression of vpx with either HIV-2 gag or gag-pol gave rise to virus-like particles that contained Vpx in amounts similar to that detected in HIV-2 virus produced from productively infected T cells. Using C-terminal deletion and truncation mutants of HIV-2 Gag, we mapped the p15 coding sequence for determinants of Vpx packaging. This analysis revealed a region (residues 439 to 497) downstream of the nucleocapsid protein (NC) required for incorporation of Vpx into virions. HIV-1/HIV-2 gag chimeras were constructed to further characterize the requirements for incorporation of Vpx into virions. Chimeric HIV-1/HIV-2 Gag particles consisting of HIV-1 p17 and p24 fused in frame at the C terminus with HIV-2 p15 effectively incorporate Vpx, while chimeric HIV-2/HIV-1 Gag particles consisting of HIV-2 p17 and p27 fused in frame at the C terminus with HIV-1 p15 do not. Expression of a 68-amino-acid sequence of HIV-2 containing residues 439 to 497 fused to the coding regions of HIV-1 p17 and p24 also produced virus-like particles capable of packaging Vpx in amounts similar to that of full-length HIV-2 Gag. Sucrose gradient analysis confirmed particle association of Vpx and Gag proteins. These results demonstrate that the HIV-2 Gag precursor (p55) regulates incorporation of Vpx into virions and indicates that the packaging signal is located within residues 439 to 497.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) requires the sequential activities of virus-encoded proteins during replication. The activities of several host cell proteins and machineries are also critical to the completion of virus assembly and the release of infectious virus particles from cells. One of these proteins, the double-stranded RNA-binding protein Staufen1 (Stau1), selectively associates with the HIV-1 genomic RNA and the viral precursor Gag protein, pr55Gag. In this report, we tested whether Stau1 modulates pr55Gag assembly using a new and specific pr55Gag oligomerization assay based on bioluminescence resonance energy transfer (BRET) in both live cells and extracts after cell fractionation. Our results show that both the overexpression and knockdown of Stau1 increase the pr55Gag-pr55Gag BRET levels, suggesting a role for Stau1 in regulating pr55Gag oligomerization during assembly. This effect of Stau1 on pr55Gag oligomerization was observed only in membranes, a cellular compartment in which pr55Gag assembly primarily occurs. Consistently, expression of Stau1 harboring a vSrc myristylation signal led to a 6.5-fold enrichment of Stau1 in membranes and a corresponding enhancement in the Stau1-mediated effect on pr55Gag-pr55Gag BRET, demonstrating that Stau1 acts on assembly when targeted to membranes. A role for Stau1 in the formation of particles is further supported by the detection of membrane-associated detergent-resistant pr55Gag complexes and the increase of virus-like particle release when Stau1 expression levels are modulated. Our results indicate that Stau1 influences HIV-1 assembly by modulating pr55Gag-pr55Gag interactions, as shown in a live cell interaction assay. This likely occurs when Stau1 interacts with membrane-associated assembly intermediates.  相似文献   

5.
Interacting domains in human immunodeficiency virus type 1 (HIV-1) Gag precursor (Pr55gag) expressed in recombinant baculovirus-infected cells were investigated by three different methods: (i) trans rescue and coencapsidation of C-terminal deletion (amber) Gag mutants and Gag chimeras into retrovirus-like particles in complementation experiments with HIV-1 wild-type (WT) Pr55gag, (ii) Gag-Gag interactions in vitro in Gag ligand affinity blotting assays, and (iii) quantitative immunoelectron microscopy of retrovirus-like Gag particles, using a panel of monoclonal antibodies to probe the epitope accessibility of encapsidated HIV-1 WT Pr55gag. Four discrete regions, within residues 210 to 241, 277 to 306 (major homology region), and 307 to 333 in the capsid (CA) protein and residues 358 to 374 at the CA-spacer peptide 2 (sp2) junction, were found to have a significant influence on Gag trans-packaging efficiency. A fifth region, within residues 375 to 426, overlapping the sp2-nucleocapsid (NC) protein junction and most of the NC, seemed to be essential for stable inter-Gag binding in vitro. The coincidence of the two regions from 358 to 374 and 375 to 426 with an immunologically silent domain in WT Gag particles suggested that they could participate in direct Gag interactions.  相似文献   

6.
研究了重组痘苗病毒表达的HIV-1核心蛋白(Gag)p17-p24蛋白的些生物学及免疫学特点。间接免疫荧光、Dot 及LISA及Western blot结果表明,构建的两株重组病毒分别表达了HIV-1Gap p24及p17-p24融合蛋白。电镜观察证实,Gag p24及p17-24重组蛋白均可形成病毒样粒子。重组病毒可诱导小鼠产生抗HIV-1Gap p24抗体。重组病毒感染BHK21细胞后,可见由  相似文献   

7.
Productive, spreading infection of peripheral blood lymphocytes (PBL) with human immunodeficiency virus type 1 (HIV-1) requires the viral protein Vif. To study the requirement for vif in this system, we infected PBL with a phenotypically complemented HIV-1 clone mutated in vif. Progeny virus was produced which was noninfectious in PBL but replicated in SupT1 cells. Analysis of metabolically labeled proteins of sedimentable extracellular particles made in PBL by radioimmunoprecipitation with either serum from a patient with AIDS or a monoclonal antibody reactive with HIV-1 Gag proteins revealed that vif-negative but not wild-type particles carry higher levels of p55, p41, and p38 Gag-specific proteins compared with those of p24. Similar results were obtained with sucrose-purified virions. Our data indicate that vif plays a role in Gag protein processing or in incorporation of processed Gag products into mature virions. The presence of unprocessed precursor Gag polyprotein (Pr55gag) and other Gag processing intermediates in PBL-derived vif-negative extracellular particles may contribute to the reduced infectivity of this virus.  相似文献   

8.
In cells, the expression of Gag protein, one of the major structural proteins of retroviruses, is sufficient for budding virus-like particles (VLPs) from the cell surface. We have previously reported that spheroplasts of Saccharomyces cerevisiae expressing HIV-1 Gag proteins from an episomal plasmid constitutively released a large amount of VLPs into culture media; however, commercially available ELISA kits which detect mature capsid of HIV-1 could not detect uncleaved 55-kDa Gag proteins released from budding yeast. We therefore developed a method to quantitate VLP levels released from budding yeast by using fusion protein from HIV-1 Gag and Firefly Luciferase. This system is useful for screening cellular factor(s) involved in retrovirus budding from S. cerevisiae.  相似文献   

9.
A replication-competent rhabdovirus-based vector expressing human immunodeficiency virus type 1 (HIV-1) Gag protein was characterized on human cell lines and analyzed for the induction of a cellular immune response in mice. We previously described a rabies virus (RV) vaccine strain-based vector expressing HIV-1 gp160. The recombinant RV was able to induce strong humoral and cellular immune responses against the HIV-1 envelope protein in mice (M. J. Schnell et al., Proc. Natl. Acad. Sci. USA 97:3544-3549, 2000; J. P. McGettigan et al., J. Virol. 75:4430-4434, 2001). Recent research suggests that the HIV-1 Gag protein is another important target for cell-mediated host immune defense. Here we show that HIV-1 Gag can efficiently be expressed by RV on both human and nonhuman cell lines. Infection of HeLa cells with recombinant RV expressing HIV-1 Gag resulted in efficient expression of HIV-1 precursor protein p55 as indicated by both immunostaining and Western blotting. Moreover, HIV-1 p24 antigen capture enzyme-linked immunosorbent assay and electron microscopy showed efficient release of HIV-1 virus-like particles in addition to bullet-shaped RV particles in the supernatants of the infected cells. To initially screen the immunogenicity of this new vaccine vector, BALB/c mice received a single vaccination with the recombinant RV expressing HIV-1 Gag. Immunized mice developed a vigorous CD8(+) cytotoxic T-lymphocyte response against HIV-1 Gag. In addition, 26.8% of CD8(+) T cells from mice immunized with RV expressing HIV-1 Gag produced gamma interferon after challenge with a recombinant vaccinia virus expressing HIV-1 Gag. These results further confirm and extend the potency of RV-based vectors as a potential HIV-1 vaccine.  相似文献   

10.
11.
The human immunodeficiency virus type 1 (HIV-1) Pr55gag precursors were previously shown to assemble and bud efficiently as noninfectious virus-like particles (VLPs) when expressed in baculovirus-infected insect cells. In this study, we examined the abilities of foreign antigens to be incorporated on the outer surface of HIV-1 Gag particles. We have used a dual recombinant baculovirus, expressing the HIV-1 Gag gene and gD gene under the control of the P10 and polyhedrin promoters, respectively, to obtain hybrid VLPs. Transmission electron microscopy of insect cells infected with the dual recombinant revealed very large aggregates of particles budding from the cell membrane. The release of VLPs into the culture medium was clearly different for a recombinant baculovirus producing solely HIV-1 Gag, for which particles were uniformly distributed all around the cell surface. Biochemical analysis of hybrid particles indicated that glycoprotein gD was packaged into HIV-1 Gag VLPs. Moreover, the carboxy-terminal p6 region of Gag polyprotein and the glycoprotein gD intracytoplasmic domain were not required for gD incorporation. The experiments described here clearly demonstrate that glycoprotein gD can be packaged with HIV-1 Gag particles and released from insect cells.  相似文献   

12.
Kaye JF  Lever AM 《Journal of virology》1999,73(4):3023-3031
Retroviral RNA encapsidation is a highly selective process mediated through recognition by the viral Gag proteins of cis-acting RNA packaging signals in genomic RNA. This RNA species is also translated, producing the viral gag gene products. The relationship between these processes is poorly understood. Unlike that of human immunodeficiency virus type 1 (HIV-1), the dominant packaging signal of HIV-2 is upstream of the major splice donor and present in both unspliced and spliced viral RNAs, necessitating additional mechanisms for preferential packaging of unspliced genomic RNA. Encapsidation studies of a series of HIV-2-based vectors showed efficient packaging of viral genomes only if the unspliced, encapsidated RNA expressed full-length Gag protein, including functional nucleocapsid. We propose a novel encapsidation initiation mechanism, providing selectivity, in which unspliced HIV-2 RNA is captured in cis by the Gag protein. This has implications for the use of HIV-2 and other lentiviruses as vectors.  相似文献   

13.
It is unclear whether proteolytic processing of the human immunodeficiency virus type 1 (HIV-1) Gag protein is dependent on virus assembly at the plasma membrane. Mutations that prevent myristylation of HIV-1 Gag proteins have been shown to block virus assembly and release from the plasma membrane of COS cells but do not prevent processing of Gag proteins. In contrast, in HeLa cells similar mutations abolished processing of Gag proteins as well as virus production. We have now addressed this issue with CD4+ T cells, which are natural target cells of HIV-1. In these cells, myristylation of Gag proteins was required for proteolytic processing of Gag proteins and production of extracellular viral particles. This result was not due to a lack of expression of the viral protease in the form of a Gag-Pol precursor or a lack of interaction between unmyristylated Gag and Gag-Pol precursors. The processing defect of unmyristylated Gag was partially rescued ex vivo by coexpression with wild-type myristylated Gag proteins in HeLa cells. The cell type-dependent processing of HIV-1 Gag precursors was also observed when another part of the plasma membrane binding signal, a polybasic region in the matrix protein, was mutated. The processing of unmyristylated Gag precursors was inhibited in COS cells by HIV-1 protease inhibitors. Altogether, our findings demonstrate that the processing of HIV-1 Gag precursors in CD4+ T cells occurs normally at the plasma membrane during viral morphogenesis. The intracellular environment of COS cells presumably allows activation of the viral protease and proteolytic processing of HIV-1 Gag proteins in the absence of plasma membrane binding.  相似文献   

14.
15.
We have used a recombinant vaccinia virus (VV) which expresses high levels of human immunodeficiency virus-1 (HIV-1) gag proteins to analyze the processing pathway of the gag p55 precursor. HIV-1 gag proteins were isolated from [3H]leucine-labeled VV:gag-infected H9 T lymphocytes by immunoprecipitation with either anti-p24, anti-p17, or anti-p6 antibodies. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that processing of the p55 precursor involves three major intermediates (p41a, p41b, and p39). The p41a and p39 proteins contain the p17 and p24 protein segments, and the p41b is comprised of p24 and p15 segments. On two-dimensional gels, each intermediate as well as the mature p24 and p17 proteins migrated as distinct species. [3H]Myristic acid labeling of the HIV-1 gag proteins revealed that in addition to p55 and p17, the p41a and p39 intermediates, but not p41b, are myristylated, confirming that myristylation occurs at the NH2 terminus before cleavage of the p55 precursor protein. We conclude that the myristylated HIV-1 gag p55 precursor is initially cleaved at random either at the p17/p24 junction or at two sites between p24 and p15 proteins, resulting in three intermediates (p41a, p41b, and p39) which are subsequently cleaved to yield mature gag proteins.  相似文献   

16.
The precursor group-specific antigen (pr55Gag) is central to HIV-1 assembly. Its expression alone is sufficient to assemble into virus-like particles. It also selects the genomic RNA for encapsidation and is involved in several important virus-host interactions for viral assembly and restriction, making its synthesis essential for aspects of viral replication. Here, we show that the initiation of translation of the HIV-1 genomic RNA is mediated through both a cap-dependent and an internal ribosome entry site (IRES)-mediated mechanisms. In support of this notion, pr55Gag synthesis was maintained at 70% when cap-dependent translation initiation was blocked by the expression of eIF4G- and PABP targeting viral proteases in two in vitro systems and in HIV-1-expressing cells directly infected with poliovirus. While our data reveal that IRES-dependent translation of the viral genomic RNA ensures pr55Gag expression, the synthesis of other HIV-1 proteins, including that of pr160Gag/Pol, Vpr and Tat is suppressed early during progressive poliovirus infection. The data presented herein implies that the unspliced HIV-1 genomic RNA utilizes both cap-dependent and IRES-dependent translation initiation to supply pr55Gag for virus assembly and production.  相似文献   

17.
Assembly of human immunodeficiency virus type 1 (HIV-1) particles occurs at the plasma membrane of infected cells. Myristylation of HIV-1 Gag precursor polyprotein Pr55Gag is required for stable membrane binding and for assembly of viral particles. We expressed a series of proteins representing major regions of the HIV-1 Gag protein both with and without an intact myristyl acceptor glycine and performed subcellular fractionation studies to identify additional regions critical for membrane binding. Myristylation-dependent binding of Pr55Gag was demonstrated by using the vaccinia virus/T7 hybrid system for protein expression. Domains within the matrix protein (MA) region downstream of the initial 15 amino acids were required for membrane binding which was resistant to a high salt concentration (1 M NaCl). A myristylated construct lacking most of the matrix protein did not associate with the plasma membrane but formed intracellular retrovirus-like particles. A nonmyristylated construct lacking most of the MA region also was demonstrated by electron microscopy to form intracellular particles. Retrovirus-like extracellular particles were produced with a Gag protein construct lacking all of p6 and most of the nucleocapsid region. These studies suggest that a domain within the MA region downstream from the myristylation site is required for transport of Gag polyprotein to the plasma membrane and that stable plasma membrane binding requires both myristic acid and a downstream MA domain. The carboxyl-terminal p6 region and most of the nucleocapsid region are not required for retrovirus-like particle formation.  相似文献   

18.
19.
The mechanisms involved in the incorporation of viral glycoproteins into virions are incompletely understood. For retroviruses, incorporation may involve interactions between the Gag proteins of these viruses and the cytoplasmic domains of the relevant envelope (Env) glycoproteins. Recent studies have identified within the cytoplasmic tail of the human immunodeficiency virus type 1 (HIV-1) Env protein a tyrosine-containing internalization motif similar to those found in the cytoplasmic domains of certain cell surface proteins that undergo rapid constitutive endocytosis in clathrin-coated pits. Given that surface expression of the HIV-1 Env protein is essential for the production of infectious virus, the presence of this internalization motif is surprising. We show here that in contrast to the rapid rate of Env protein internalization observed in cells expressing the Env protein in the absence of other HIV-1 proteins, the rate of internalization of Env protein from the surfaces of HIV-1-infected cells is extremely slow. The presence of the Pr55gag precursor protein is necessary and sufficient for inhibition of Env protein internalization, while a mutant Pr55-gag that is incapable of mediating Env incorporation into virions is also unable to inhibit endocytosis of the Env protein. The failure of the Env protein to undergo endocytosis from the surface of an HIV-1-infected cell may reflect the fact that the proposed interaction of the matrix domain of the Gag protein with Env during assembly prevents the interaction of Env with host adaptin molecules that recruit plasma membrane molecules such as the transferrin receptor into clathrin-coated pits. When the normal ratio of Gag and Env proteins in the infected cells is altered by overexpression of Env protein, this mechanism allows removal of excess Env protein from the cell surface. Taken together, these results suggest that a highly conserved system to reduce surface levels of the Env protein functions to remove Env protein that is not associated with Gag and that is therefore not destined for incorporation into virions. This mechanism for the regulation of surface levels of Env protein may protect infected cells from Env-dependent cytopathic effects or Env-specific immune responses.  相似文献   

20.
To examine the potential role of the GAG precursor polyprotein in morphogenesis and assembly of the simian immunodeficiency virus (SIV), we have expressed the gag gene of SIVMac using a baculovirus expression vector. Infection of insect cells with recombinant virus containing the entire gag gene results in high expression of the GAG precursor protein, Pr57gag. The recombinant protein is myristylated and is released in the culture supernatant in an insoluble particulate form. A point mutation in the N-terminal glycine codon (Gly----Ala) inhibits myristylation. This mutated product is highly expressed but is not found in the culture supernatant. Electron microscopy and immunogold labelling of infected cells show that the native Pr57gag protein assembles into 100-120 nm virus-like particles that bud from the cell plasma membrane and are released in the culture supernatant. The unmyristylated protein also assembles into particulate structures which only accumulate inside the cells. These results demonstrate that the unprocessed GAG precursor of SIV can spontaneously assemble into particles in the absence of other viral proteins. Myristylation of the Pr57gag precursor is necessary for its association with the cell plasma membrane, for budding and for extracellular release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号