首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R.L. Reid  S.S.C. Yen 《Life sciences》1981,29(25):2641-2647
β-endorphin administration via constant infusion inhibited the release of growth hormone (GH) and augmented the release of prolactin (PRL) induced by arginine in normal female subjects. Although β-endorphin infusion also induced hyperglycemia, the increment in plasma glucose was insufficient to account for the observed suppression of arginine-initiated GH release. These studies demonstrate that β-endorphin influences, in opposed directions, the secretion of PRL and GH in women.  相似文献   

2.
3.
We have synthesized the peptide TPLVTLFK corresponding to β-endorphin fragment 12–19 (dubbed octarphin) and its analogs (LPLVTLFK, TLLVTLFK, TPLVLLFK, TPLVTLLK, TPLVTLFL). The octarphin peptide was labeled with tritium (specific activity 28 Ci/mol), and its binding to murine peritoneal macrophages was studied. [3H]Octarphin was found to bind to macrophages with high affinity (K d = 2.3 ± 0.2 nM) and specificity. The specific binding of [3H]octarphin was inhibited by unlabeled β-endorphin and the selective agonist of nonopioid β-endorphin receptor synthetic peptide immunorphin (SLTCLVKGFY) (K i = 2.7 ± 0.2 and 2.4 ± 0.2 nM, respectively) and was not inhibited by unlabeled nalox-one, α-endorphin, γ-endorphin, or [Met5]enkephalin (K i > 10 μM). Inhibitory activity of unlabeled octarphin analogs was more than 100 times lower than that of unlabeled octarphin. Octarphin was shown to stimulate activity of murine immuno-competent cells in vitro and in vivo: at concentration of 1–10 nM it enhanced the adhesion and spreading of peritoneal macrophages as well as their ability to digest bacteria of Salmonella typhimurium virulent strain 415 in vitro; the peptide administered intraperitoneally at a dose of 20 μg/animal on day 7, 3, and 1 prior to isolation of cells increased activity of peritoneal macrophages as well as spleen T- and B-lymphocytes.  相似文献   

4.
Human β-endorphin (15 μg) administered intracisternally increased concentrations of serotonin (5HT) and its metabolite, 5-hydroxyindoleacetic. acid (5-HIAA), in brain stem and hypothalamus and decreased 5-HIAA concentrations in hippocampus. These data are compatible with the hypothesis that β-endorphin increases 5HT turnover in brain stem and hypothalamus and decreases 5HT turnover in hippocampus. β-endorphin increased in brain stem and hypothalamus and decreased in hippocampus the rate of pargyline-induced decline of 5-HIAA. β-endorphin decreased the rate of pargyline-induced accumulation of 5HT in all these brain regions. The probenecid-induced accumulation of 5-HIAA in brain stem was decreased by β-endorphin. These data are compatible with the hypothesis that β-endorphin increases release of 5HT from neurons in brain stem and hypothalamus and decreases release of 5HT from neurons in hippocampus. The data require further a hypothesis that β-endorphin either decreases 5HT reuptake in these three brain regions or increases 5-HIAA egress from brain.  相似文献   

5.
The behavioral effects of β-endorphin, enkephalin analogs, morphine and etorphine were briefly compared. In the tail-flick test in mice and in the wet shake test in rats, β-endorphin and D-Ala2-D-Leu5-enkephalin had equal antinociceptive activity; D-Ala2 -Met-enkephalinamide and D-Leu5-enkephalin were less active. The order of activity of the enkephalin analogs and opiate alkaloids for stimulating locomotor activity in mice paralleled their analgesic activities; β-endorphin, however, had only minimal stimulatory actions. Morphine sulfate, 50 μg injected into the periaqueductal gray, produced hyperactivity but this effect was not observed with etorphine or opioid peptides. By contrast, “wet dog” shakes was observed with the opioid peptides but not with either opiate alkaloid. These heterogenous behavioral responses, which were all antagonized by naloxone, indicate that multiple types of receptors mediate the effects of opiates in the central nervous system.  相似文献   

6.
7.
Previous work has indicated that plasma cortisol increases during farrowing in the pig suggesting increasing physiological stress. The aim of this study was to determine changes in plasma cortisol and β-endorphin over farrowing in the pig to obtain a more detailed profile of pituitary and adrenal release at this time and also to investigate the involvement of endogenous opioids in the mediation of the HPA axis. Indwelling jugular catheters were implanted, under general anaesthesia, in 31 Large White×Landrace gilts approximately 15 days before the expected parturition day (EPD). Gilts were moved into either a farrowing crate, without straw (n=15), or a straw-bedded pen (n=16) 5 days before the EPD. Samples were taken during the pre-farrowing period and then during farrowing itself. At 7.5 min after the birth of the first piglet (BFP), gilts either received naloxone, an opioid antagonist, (1 mg kg−1 body weight, i.v.) or a control dose of saline. Plasma β-endorphin increased following the BFP but remained fairly constant over the third and fourth hour of farrowing. Plasma cortisol continued to increase over the 4 h following the BFP. Changes seen in these hormones were generally insensitive to the environment and there was little evidence of opioid mediation of the HPA axis at parturition. From these results it is suggested that certain aspect(s) of parturition itself stimulate the HPA axis. However it is unknown if the rise in plasma cortisol is a result of some stress-inducing factor of the parturition process or whether it reflects a metabolic function. The study also demonstrates the lack of any inhibitory mediation of the HPA axis by endogenous opioids at parturition.  相似文献   

8.
A sensitive and specific radioimmunoassay for β-endorphin has been developed with an antiserum obtained in a rabbit immunized with β-endorphin contained in crude porcineACTH preparations. The minimal detectable quantity was 5 pg. The antiserum used reacted slightly with ovine β-lipotropin (5.5 %), but showed negligible cross-reactivity with other fragments of β-lipotropin, α-MSH and ACTH. Using this radioimmunoassay we have observed the presence of “big-big” β-endorphin (“big” β-lipotropin) with apparent molecular weights of 37,000 and 31,000 in human and rat pituitaries respectively, in addition to β-lipotropin and β-endorphin, by Sephadex gel-chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis.  相似文献   

9.

Background

TRPA1 has been implicated in both chemo- and mechanosensation. Recent work demonstrates that inhibiting TRPA1 function reduces mechanical hypersensitivity produced by inflammation. Furthermore, a broad range of chemical irritants require functional TRPA1 to exert their effects. In this study we use the ex-vivo skin-nerve preparation to directly determine the contribution of TRPA1 to mechanical- and chemical-evoked responses at the level of the primary afferent terminal.

Results

Acute application of HC-030031, a selective TRPA1 antagonist, inhibited all formalin responses in rat C fibers but had no effect on TRPV1 function, assessed by capsaicin responsiveness. Genetic ablation experiments corroborated the pharmacological findings as C fibers from wild type mice responded to both formalin and capsaicin, but fibers from their TRPA1-deficient littermates responded only to capsaicin. HC-030031 markedly reduced the mechanically-evoked action potential firing in rat and wild type mouse C fibers, particularly at high-intensity forces, but had no effect on the mechanical responsiveness of Aδ fiber nociceptors. Furthermore, HC-030031 had no effect on mechanically-evoked firing in C fibers from TRPA1-deficient mice, indicating that HC-030031 inhibits mechanically-evoked firing via a TRPA1-dependent mechanism.

Conclusion

Our data show that acute pharmacological blockade of TRPA1 at the cutaneous receptive field inhibits formalin-evoked activation and markedly reduces mechanically-evoked action potential firing in C fibers. Thus, functional TRPA1 at sensory afferent terminals in skin is required for their responsiveness to both noxious chemical and mechanical stimuli.  相似文献   

10.
Human β-endorphin produced a potent antinociceptive response as estimated by the tail-flick test in rats after intraventricular injection. On a molar basis, the peptide was 21 times more potent than morphine and in addition, the peptide produced morphine-like catatonia and hypothermia. These responses were blocked by naloxone. Repeated injections of the peptide induced tolerance to analgesic response, catatonia and hypothermia. Cross tolerance to morphine was also observed.  相似文献   

11.
Summary A peptide immunochemically related to -endorphin was detected in some LH-RH neurons of the fetal human hypothalamus by comparison of adjacent sections stained for -endorphin and for LH-RH. In the same section, by successive staining and after antibody elution, both peptides were again revealed in the same neuron. The significance of the presence of the -endorphin-like material in LH-RH neurons is discussed.  相似文献   

12.
Research results of the synthetic decapeptide SLTCLVKGFY (the author’s term is immunorphin) corresponding to the 364–373 sequence of G heavy-chain human immunoglobulin are summarized. Special attention is paid to the interaction between immunorphin and nonopioid (insensitive to the opioid antagonist naloxone) β-endorphin receptor. Using radioligand analysis, data were found regarding the distribution and functions of nonopioid β-endorphin receptor in human and animal bodies and the binding characteristics of immunorphin with nonopioid receptor.  相似文献   

13.
The tritium-labeled selective agonist of the nonopioid β-endorphin receptor the decapeptide immunorphin ([3H]SLTCLVKGFY) with a specific activity of 24 Ci/mmol was prepared. It was shown that [3H]immunorphin binds with a high affinity to the non-opioid β-endorphin receptor of mouse peritoneal macrophages (K d 2.4 ± 0.1 nM). The specific binding of [3H]immunorphin to macrophages was inhibited by unlabeled β-endorphin (K i of the [3H]immunorphin-receptor complex 2.9 ± 0.2 nM) and was not inhibited by unlabeled naloxone, α-endorphin, γ-endorphin, and [Met5]enkephalin (K i > 10 μM). Thirty fragments of β-endorphin were synthesized, and their ability to inhibit the specific binding of [3H]immunorphin to macrophages was studied. It was found that the shortest peptide having practically the same inhibitory activity as β-endorphin is its fragment 12–19 (K i 3.1 ± 0.3 nM).  相似文献   

14.
The effect of intraventricular administration of β-endorphin on pulsatile LH release in castrated conscious rats was studied. The administration of 1 μg of β-endorphin into the lateral ventricle inhibited pulsatile discharge of LH secretion. Intravenous administration of naloxone blocked the suppressive effect of β-endorphin on LH release. These results suggest a possible role of β-endorphin, in addition to Met5-enkephalin, in the control of LH release in male rats.  相似文献   

15.
Small β-hairpin peptides have been widely used as models for the folding of β-sheets. But how applicable is the folding of such models to β-structure in larger proteins with conventional hydrophobic cores? Here we present multiple unfolding simulations of three such proteins that contain the WW domain double hairpin β-sheet motif: cold shock protein A (CspA), cold shock protein B (CspB) and glucose permease IIA domain. We compare the behavior of the free motif in solution and in the context of proteins of different size and architecture. Both Csp proteins lost contacts between the double-hairpin motif and the protein core as the first step of unfolding and proceeded to unfold with loss of the third β-strand, similar to the isolated WW domain. The glucose permease IIA domain is a larger protein and the contacts between the motif and the core were not lost as quickly. Instead the unfolding pathway of glucose permease IIA followed a different pathway with β1 pulling away from the sheet first. Interestingly, when the double hairpin motif was excised from the glucose permease IIA domain and simulated in isolation in water it unfolded by the same pathway as the WW domain, indicating that it is tertiary interactions with the protein that alter the motif’s unfolding not a sequence dependent effect on its intrinsic unfolding behavior. With respect to the unfolding of the hairpins, there was no consistent order to the loss of hydrogen bonds between the β-strands in the hairpins in any of the systems. Our results show that while the folding behavior of the isolated WW domain is generally consistent with the double hairpin motif’s behavior in the cold shock proteins, it is not the case for the glucose permease IIA domain. So, one must be cautious in extrapolating findings from model systems to larger more complicated proteins where tertiary interactions can overwhelm intrinsic behavior.  相似文献   

16.
Recordings were made of post-denervation changes in resting potential and input resistance in muscle fiber membrane, as well as anode break, tetrodotoxin resistant action potentials, and asynaptic sensitivity to acetylcholine during experiments on cultured diaphragm muscle fiber isolated from rats. Addition of -endorphin to the culture medium prevented increase in the input resistance of muscle fibers and reduced development of asynaptic transmitter sensitivity in the membrane, but failed to change the ability of the denervated muscle membrane to generate anode break and tetrodotoxin-resistant action potentials. The effects of -endorphin were not abolished by naloxone, which itself had endorphin-like powers as measured by the indices used in this research. It is therefore suggested that -endorphin or like substances could be claimed as the neurotrophic factors responsible for controlling passive electrical properties of the muscle fiber membrane and contribute to regulating its acetylcholine sensitivity.S. V. Kurashov Medical Institute, Ministry of Public Health of the RSFSR, Kazan'. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 759–766, November–December, 1987.  相似文献   

17.
Insights into the three-dimensional structure of hormone fibrils are crucial for a detailed understanding of how an amyloid structure allows the storage of hormones in secretory vesicles prior to hormone secretion into the blood stream. As an example for various hormone amyloids, we have studied the endogenous opioid neuropeptide β-endorphin in one of its fibril forms. We have achieved the sequential assignment of the chemical shifts of the backbone and side-chain heavy atoms of the fibril. The secondary chemical shift analysis revealed that the β-endorphin peptide adopts three β-strands in its fibril state. This finding fosters the amyloid nature of a hormone at the atomic level.  相似文献   

18.
The isolation of a 31-amino acid peptide from human pituitary glands has been described. Its amino acid sequence has been proposed to be identical to the sequence of the carboxyl-terminal 31 amino acids of human β-lipotropin. The peptide, designated as βh-endorphin, possesses significant opiate activity.  相似文献   

19.
In view of the close structural similarity of the pro-opiocortin fragment γ-MSH and of ACTH/MSH type peptides, the behavioral profile of γ-MSH was explored. Attention was first focussed on behavioral procedures in which ACTH/MSH related neuropeptides have been found effective. Using different procedures to test avoidance behavior, it was found that γ-MSH and ACTH-like neuropeptides had opposite effects. In this respect the activity of γ-MSH resembles that of opiate antagonists rather than that of β-endorphin. Accordingly, ACTH1–24-induced excessive grooming which is blocked by opiate antagonists, is attenuated by γ-MSH. In addition, γ-MSH injected into the periaqueductal gray matter of the brainstem of opiate naive rats elicited symptoms reminiscent of those seen after opiate withdrawal. γ-MSH attenuated more or less several effects of intracerebroventricularly administered β-endorphin (e.g. antinociception, hypothermia, α-MSH release) and decreased acquisition of heroin self-administration. Although γ-MSH at rather high doses displaced naloxone from its specific binding sites in brain homogenates, it did not interfere with β-endorphin-induced effects on in vitro muscle preparations (guinea pig ileum, rat rectum). Interestingly, γ-MSH induced relaxation of the rat rectum in vitro. It is postulated that γ-MSH may attenuate β-endorphin-induced effects by acting via γ-MSH receptor sites (functional antagonism), although a pharmacological antagonism cannot be excluded as yet.  相似文献   

20.
In the literature there appears to be variability in reported levels of certain hormones during haemorrhage, specifically adrenocorticotrophic hormone (ACTH) and β-endorphin. It is possible that this variability may be due to the choice of anaesthetic. Therefore, the effect of 3 common research-only anaesthetic agents (alphaxalone-alphadolone, propofol, and pentobarbitone) on ACTH and β-endorphin levels during haemorrhage was assessed in pigs. Animals were divided into 3 groups: group I received alphaxalone-alphadolone (n = 5), group II received propofol (n = 6), and group III received pentobarbitone (n = 6). Pigs were subjected to a continuous fixed-volume haemorrhage under one of the above anaesthetics while being mechanically ventilated. ACTH and β-endorphin levels increased significantly during haemorrhage under propofol and pentobarbitone anaesthesia but not with alphaxalone-alphadolone. For ACTH there was no significant difference between the groups, whereas for β-endorphin there was a significant difference between the propofol- and pentobarbitone-anaesthetized pigs. The increase in heart rate during haemorrhage was significantly different between the alphaxalone-alphadolone and propofol as well as between the propofol and pentobarbitone groups. The drop in blood pressure was only significantly different between the alphaxalone-alphadolone- and propofol-anaesthetized pigs. These results indicate that the choice of anaesthetic agent can affect the hormone response to haemorrhage and may account for the variable hormone levels reported in the published literature to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号