首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用大量小麦亲本材料和优良品种(系)与具有粘果、易变、偏凸和二角山羊草细胞质的小麦雄性不育系杂交,并对其杂交F1过氧化物同工酶进行了分析,结果表明:(1)二角山羊草细胞质与小麦核内的遗传物质组成两个不同的核质互作不育系统,粘、易、偏型不育系育性基本表现一致,而二角型不育系除了与前三种不育系具有相同的1BL/1RS保持系以外,对某些小麦近缘植物的杂交后代材料还表现出育性特异性。(2)粘、易、偏和二角型同核异质不育系5-1及其与V9125杂交F1过氧化物同工酶分析表明,粘、易、偏和二角型不育系5-1过氧化物同工酶带型基本表现一致,粘、易、偏不育系5-1与V9125杂交F1过氧化物同工酶带型基本表现一致,而二角型不育系5-1杂交F1过氧化物同工酶则表现出酶带减少变弱。  相似文献   

2.
粘型小麦雄性不育系减数分裂特征及育性恢复研究   总被引:3,自引:0,他引:3  
王小利  张改生等 《西北植物学报》2001,21(5):832-838,T001
调查了粘型1B/1R和非1B/1R小麦雄性不育系,保持系及其F2的花粉母细胞减数分裂中期Ⅰ染色体联会情况、后期Ⅰ出现落后染色体的细胞频率以及末期Ⅱ含有微核的四分体的频率,结果表明:(1)粘果山羊细胞质对1B/1R型不育系减数分裂染色体配对水平具有特异性降低作用;(2)粘型1B/1R不育系减数分裂中期Ⅰ出现单价体细胞频率与后期Ⅰ出现落后染色体细胞的频率呈正相关,也与含微核的四分体频率呈正相关,而对应保持系则没有相关性;(3)粘果山羊草细胞质对非1B/1R不育系减数分裂过程影响不大,5个1B/1R不育系减数分裂过程中,3个时期染色体行为变异率的差异是特定的1B/1R核型与粘果山羊草细胞质互作的结果;(4)粘型1B/1R不育系杂交R2单株减数分裂3个时期染色体行为变异率与其恢复度成反比,这类不育系减数分裂中染色体行为不同步是其恢复不高且变异较大的一重要原因。  相似文献   

3.
水稻CMS-DA育性恢复基因定位及其互作分析   总被引:16,自引:0,他引:16  
在由210个测交组合组成的青早A/(协青早B/密阳46)F6群体中,构建了由129个RFLP、SSLP组成的连锁遗传图普。应用QTL分析方法,对水矮败型质雄性不育恢复基因进行了定位。检测到一个主效基因和3个效应较小的QTL(qRf-1、qRf-1、qRf-5),这些基因这宰存在复杂的相互作用。  相似文献   

4.
Common wheat (Triticum aestivum L.) is one of the most important crops,and intra-specific wheat hybrids have obvious heterosis in yield and protein quality.Therefore,utilization of hybrid wheat varieties offers an effective way to increase yield and nutrition.Cytoplasmic male sterility (CMS) systems are a useful genetic tool for hybrid crop breeding,and are ideal models for studying the genetic interaction and cooperative function of mitochondrial and nuclear genomes in plants (Schnable and Wise,1998;Hanson and Bentolila,2004).The breeding of hybrid wheat using male sterility caused by the cytoplasm of T.timopheevii has been studied since the early 1960's.But it is unsuccessful because there are some deficiencies in the practical application of this cytoplasm,including limited restoration resources,thin seeds,pre-harvest sprouting and lower germination rate (Wilson and Ross,1962).The Sv type of cytoplasmic male sterility (CMS-Sv) in wheat is general accessions for four types of CMS lines that were derived from four Aegilops species:Ae.kotschyi,Ae.variabilis,Ae.ventricosa,and Ae.bicornis.Based on the observation of alloplasmic lines produced in all possible combinations between 12 wheat nuclear genotypes and 47 cytoplasms of two related genera,Triticum (wheat) and Aegilops,Ogihara and Tsunewaki (1988) concluded that the D2-cytoplasm of Ae.crassa and its relatives,N-cytoplasm of Ae.uniaristata,and SV-cytoplasm of Ae.kotschyi and its relatives might be used as the alternative male sterile cytoplasm to replace the T.timopheevii cytoplasm for hybrid wheat breeding.Ikeguchi et al.(1999) proposed that spring-type hybrid wheat may be bred by combination of the 1BL-1RS chromosome and Ae.kotschyi cytoplasm with a new fertility-restorer gene discovered in a wheat variety Kitamiharu 48.Zhang et al.(1996) also proposed the use of CMS-Sv lines as the most effective male sterile cytoplasm.  相似文献   

5.
Tan spot, caused by Pyrenophora tritici-repentis (Ptr), is an economically important foliar disease in the major wheat growing areas throughout the world. Multiple races of the pathogen have been characterized based on their ability to cause necrosis and/or chlorosis on differential wheat lines. In this research, we evaluated a population of recombinant inbred lines derived from a cross between the common wheat varieties Grandin and BR34 for reaction to tan spot caused by Ptr races 1–3 and 5. Composite interval mapping revealed QTLs on the short arm of chromosome 1B and the long arm of chromosome 3B that were significantly associated with resistance to all four races. The effects of the two QTLs varied for the different races. The 1B QTL explained from 13% to 29% of the phenotypic variation, whereas the 3B QTL explained from 13% to 41% of the variation. Additional minor QTLs were detected but not associated with resistance to all races. The host-selective toxin Ptr ToxA, which is produced by races 1 and 2, was not a significant factor in the development of disease in this population. The race-nonspecific resistance derived from BR34 may take precedence over the gene-for-gene interaction known to be associated with the wheat–Ptr system.  相似文献   

6.
Three quantitative trait loci (QTLs) controlling seed dormancy were detected on group 4 chromosomes of wheat (Triticum aestivum L.) using 119 doubled haploid lines (DHLs) derived from a cross between AC Domain and Haruyutaka. A major QTL, designated QPhs.ocs-4A.1, was identified within the marker interval between Xcdo795 and Xpsr115 in the proximal region of the long arm of chromosome 4A. Two minor QTLs, QPhs.ocs-4B.2 on 4B and QPhs.ocs-4D.2 on 4D, were flanked by common markers, Xbcd1431.1 and Xbcd1431.2 in the terminal region of the long arms, suggesting a homoeologous relationship. These three QTLs explained more than 80% of the total phenotypic variance in seed dormancy of DHLs grown in the field and under glasshouse conditions. The AC Domain alleles at the three QTLs contributed to increasing seed dormancy. Comparative maps across wheat, barley and rice demonstrated the possibility of a homoeologous relationship between QPhs.ocs-4A.1 and the barley gene SD4, while no significant effects of the chromosome regions of wheat and barley orthologous to rice chromosome 3 region carrying a major seed dormancy QTL were detected. Received: 5 June 2000 / Accepted: 31 August 2000  相似文献   

7.
Introgression of several genomic loci from tetraploid Triticum militinae into bread wheat cv. T?hti has increased resistance of introgression line 8.1 to powdery mildew in seedlings and adult plants. In our previous work, only a major quantitative trait locus (QTL) on chromosome 4AL of the line 8.1 contributed significantly to resistance, whereas QTL on chromosomes 1A, 1B, 2A, 5A and 5B were detected merely on a suggestive level. To verify and characterize all QTLs in the line 8.1, a mapping population of double haploid lines was established. Testing for seedling resistance to 16 different races/mixtures of Blumeria graminis f. sp. tritici revealed four highly significant non-race-specific resistance QTL including the main QTL on chromosome 4AL, and a race-specific QTL on chromosome 5B. The major QTL on chromosome 4AL (QPm.tut-4A) as well as QTL on chromosome 5AL and a newly detected QTL on 7AL were highly effective at the adult stage. The QPm.tut-4A QTL accounts on average for 33-49 % of the variation in resistance in the double haploid population. Interactions between the main QTL QPm.tut-4A and the minor QTL were evaluated and discussed. A population of 98 F(2) plants from a cross of susceptible cv. Chinese Spring and the line 8.1 was created that allowed mapping the QPm.tut-4A locus to the proximal 2.5-cM region of the introgressed segment on chromosome 4AL. The results obtained in this work make it feasible to use QPm.tut-4A in resistance breeding and provide a solid basis for positional cloning of the major QTL.  相似文献   

8.

Key message

One major and three minor QTLs for resistance to pre-harvest sprouting (PHS) were identified from a white wheat variety “Danby.” The major QTL on chromosome 3A is TaPHS1, and the sequence variation in its promoter region was responsible for the PHS resistance. Additive?×?additive effects were detected between two minor QTLs on chromosomes 3B and 5A, which can greatly enhance the PHS resistance.

Abstract

Pre-harvest sprouting (PHS) causes significant losses in yield and quality in wheat. White wheat is usually more susceptible to PHS than red wheat. Therefore, the use of none grain color-related PHS resistance quantitative trait loci (QTLs) is essential for the improvement in PHS resistance in white wheat. To identify PHS resistance QTLs in the white wheat cultivar “Danby” and determine their effects, a doubled haploid population derived from a cross of Danby?×?“Tiger” was genotyped using genotyping-by-sequencing markers and phenotyped for PHS resistance in two greenhouse and one field experiments. One major QTL corresponding to a previously cloned gene, TaPHS1, was consistently detected on the chromosome arm 3AS in all three experiments and explained 21.6–41.0% of the phenotypic variations. A SNP (SNP?222) in the promoter of TaPHS1 co-segregated with PHS in this mapping population and was also significantly associated with PHS in an association panel. Gene sequence comparison and gene expression analysis further confirmed that SNP?222 is most likely the causal mutation in TaPHS1 for PHS resistance in Danby in this study. In addition, two stable minor QTLs on chromosome arms 3BS and 5AL were detected in two experiments with allele effects consistently contributed by Danby, while one minor QTL on 2AS was detected in two environments with contradicted allelic effects. The two stable minor QTLs showed significant additive?×?additive effects. The results demonstrated that pyramiding those three QTLs using breeder-friendly KASP markers developed in this study could greatly improve PHS resistance in white wheat.
  相似文献   

9.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum and F. culmorum, can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. The objective of this study was to identify quantitative trait loci (QTLs) for FHB resistance in a winter wheat population developed by crossing the resistant German cultivar Dream with the susceptible British cultivar Lynx. A total of 145 recombinant inbred lines (RILs) were evaluated following spray inoculation with a F. culmorum suspension in field trials in 2002 in four environments across Germany. Based on amplified fragment length polymorphism and simple sequence repeat marker data, a 1,734 cM linkage map was established assuming that the majority of the polymorphic parts of the genome were covered. The area under disease progress curve (AUDPC) was calculated based on the visually scored FHB symptoms. The population segregated quantitatively for FHB severity. Composite interval mapping analysis for means across the environments identified four FHB resistance QTLs on chromosomes 6AL, 1B, 2BL and 7BS. Individually the QTLs explained 19%, 12%, 11% and 21% of the phenotypic variance, respectively, and together accounted for 41%. The QTL alleles conferring resistance on 6AL, 2BL and 7BS originated from cv. Dream. The resistance QTL on chromosome 6AL partly overlapped with a QTL for plant height. The FHB resistance QTL on 7BS coincided with a QTL for heading date, but the additive effect on heading date was of minor importance. The resistance QTL on chromosome 1B was associated with the T1BL.1RS wheat-rye translocation of Lynx.  相似文献   

10.
The advanced backcross QTL (AB-QTL) strategy was utilised to locate quantitative trait loci (QTLs) for baking quality traits in two BC2F3 populations of winter wheat. The backcrosses are derived from two German winter wheat cultivars, Batis and Zentos, and two synthetic, hexaploid wheat accessions, Syn022 and Syn086. The synthetics originate from hybridisations of wild emmer (T. turgidum spp. dicoccoides) and T. tauschii, rather than from durum wheat and T. tauschii and thus allowed for the first time to test for exotic QTL effects on wheat genomes A and B in addition to genome D. The investigated quality traits comprised hectolitre weight, grain hardness, flour yield Type 550, falling number, grain protein content, sedimentation volume and baking volume. One hundred and forty-nine SSR markers were applied to genotype a total of 400 BC2F3 lines. For QTL detection, a mixed-model ANOVA was conducted, including the effects DNA marker, BC2F3 line, environment and marker × environment interaction. Overall 38 QTLs significant for a marker main effect were detected. The exotic allele improved trait performance at 14 QTLs (36.8%), while the elite genotype contributed the favourable effect at 24 QTLs (63.2%). The favourable exotic alleles were mainly associated with grain protein content, though the greatest improvement of trait performance due to the exotic alleles was achieved for the traits falling number and sedimentation volume. At the QTL on chromosome 4B the exotic allele increased the falling number by 19.6% and at the QTL on chromosome 6D the exotic allele led to an increase of the sedimentation volume by 21.7%. The results indicate that synthetic wheat derived from wild emmer × T. tauschii carries favourable QTL alleles for baking quality traits, which might be useful for breeding improved wheat varieties by marker-assisted selection.  相似文献   

11.
12.
Tuyen le Q  Liu Y  Jiang L  Wang B  Wang Q  Hanh TT  Wan J 《Hereditas》2012,149(1):16-23
F(2) and BC(1) populations derived from the cross between 02428 / Rathu Heenati were used to investigate small brown planthopper (SBPH) resistance. Using the F(2) population, three QTLs for antixenosis against SBPH were located on chromosomes 2, 5 and 6, and accounted for 30.75% of the phenotypic variance; three QTLs for antibiosis against SBPH were detected on chromosomes 8, 9 and 12. qSBPH5-c explaining 7.21% of phenotypic variance for antibiosis was identified on chromosome 5 using the BC(1) population. A major QTL, qSBPH12-a1, explained about 40% of the phenotypic variance, and a minor QTL, qSBPH4-a, was detected by the SSST method in both the F(2) and BC(1) populations. The QTLs indentified in the present study will be useful for marker assisted selection of SBPH resistance in rice.  相似文献   

13.
The quality of wheat grain is largely determined by the quantity and composition of storage proteins (prolamins) and depends on mechanisms underlying the regulation of expression of prolamin genes. The endosperm-specific wheat basic region leucine zipper (bZIP) factor storage protein activator (SPA) is a positive regulator that binds to the promoter of a prolamin gene. The aim of this study was to map SPA (the gene encoding bZIP factor SPA) and genomic regions associated with quantitative variations of storage protein fractions using F7 recombinant inbred lines (RILs) derived from a cross between Triticum aestivum "Renan" and T. aestivum "Récital". SPA was mapped through RFLP using a cDNA probe and a specific single nucleotide polymorphism (SNP) marker. Storage protein fractions in the parents and RILs were quantified using capillary electrophoresis. Quantitative trait loci (QTLs) for protein were detected and mapped on six chromosome regions. One QTL, located on the long arm of chromosome 1B, explained 70% of the variation in quantity of the x subunit of Glu-B1. Genetic mapping suggested that SPA is located on chromosome arm 1L and is also present in the confidence interval of the corresponding QTL for Glu-B1x on 1BL, suggesting that SPA might be a candidate gene for this QTL.  相似文献   

14.
普通小麦1BL—1RS K,V型雄性不育体系育性恢复的研究   总被引:4,自引:0,他引:4  
对1BL-1RS K,V型雄性不育系及其保持素与中国春及其第一部分同源群染色体全部6个缺-四体杂种F1的育性恢复进行了研究。结果表明:K型杂种的育笥恢复主要受1BS上Rfv1基因的控制;而V杂种则受Rfv1的1D染色上育性恢复基因的共同控制;在保持1D正常剂量的情况下,使恢复系中载有Rfv1的1B染色体(片段)加倍,如1A缺体-1B四体能使K,V型杂种1F的育性完全恢复。  相似文献   

15.
Quantitative trait loci for aluminum resistance in wheat   总被引:4,自引:0,他引:4  
Quantitative trait loci (QTL) for wheat resistance to aluminum (Al) toxicity were analyzed using simple sequence repeats (SSRs) in a population of 192 F6 recombinant inbred lines (RILs) derived from a cross between an Al-resistant cultivar, Atlas 66 and an Al-sensitive cultivar, Chisholm. Wheat reaction to Al was measured by relative root growth and root response to hematoxylin stain in nutrient-solution culture. After screening 1,028 SSR markers for polymorphisms between the parents and bulks, we identified two QTLs for Al resistance in Atlas 66. One major QTL was mapped on chromosome 4D that co-segregated with the Al-activated malate transporter gene (ALMT1). Another minor QTL was located on chromosome 3BL. Together, these two QTLs accounted for about 57% of the phenotypic variation in hematoxylin staining score and 50% of the variation in net root growth (NRG). Expression of the minor QTL on 3BL was suppressed by the major QTL on 4DL. The two QTLs for Al resistance in Atlas 66 were also verified in an additional RIL population derived from Atlas 66/Century. Several SSR markers closely linked to the QTLs were identified and have potential to be used for marker-assisted selection (MAS) to improve Al-resistance of wheat cultivars in breeding programs.  相似文献   

16.
The present study aimed to localize exotic quantitative trait locus (QTL) alleles for the improvement of leaf rust (P. triticina) resistance in an advanced backcross (AB) population, B22, which is derived from a cross between the winter wheat cultivar Batis (Triticum aestivum) and the synthetic wheat accession Syn022L. The latter was developed from hybridization of T. turgidum ssp. dicoccoides and T. tauschii. Altogether, 250 BC2F3 lines of B22 were assessed for seedling resistance against the leaf rust isolate 77WxR under controlled conditions. In addition, field resistance against leaf rust was evaluated by assessing symptom severity under natural infestation across multiple environments. Simultaneously, population B22 was genotyped with a total of 97 SSR markers, distributed over the wheat A, B and D genomes. The phenotype and genotype data were subjected to QTL analysis by applying a 3-factorial mixed model analysis of variance including the marker genotype as a fixed effect and the environments, the lines and the marker by environment interactions as random effects. The QTL analysis revealed six putative QTLs for seedling resistance and seven for field resistance. For seedling resistance, the effects of exotic QTL alleles improved resistance at all detected loci. The maximum decrease of disease symptoms (−46.3%) was associated with marker locus Xbarc149 on chromosome 1D. For field resistance, two loci had stable main effects across environments and five loci exhibited marker by environment interaction effects. The strongest effects were detected at marker locus Xbarc149 on chromosome 1D, at which the exotic allele decreased seedling symptoms by 46.3% and field symptoms by 43.6%, respectively. Some of the detected QTLs co-localized with known resistance genes, while others appear to be as novel resistance loci. Our findings indicate, that the exotic wheat accession Syn022L may be useful for the improvement of leaf rust resistance in cultivated wheat.  相似文献   

17.
Three types of sterile cytoplasm in cytoplasmic-male-sterility (CMS) maize, T, C and S, can be identified according to their fertility-restoration and mitochondrial DNA RFLP patterns. CMS-S, which is the least stable among the three types of CMS, is controlled by sterile cytoplasm interactions with certain nuclear-encoded factors. We constructed a high-resolution map of loci associated with male-restoration of CMS-S in BC1 populations of maize. The map covers 1730.29 cM, including 32 RFLP, 51 SSR 62 RAPD and 21 AFLP markers. Genome-wide QTL analysis detected 6 QTLs with significant effects on male fertility as assessed by their starch-filled pollen ratios. Four QTLs out of six were located between the SSR markers MSbnlg1633-Mrasg20, MSbnlg1662-Msume1126, MSume1230-MSumc1525, and RAPD marker MraopQ07-2-MraopK06-2 on chromosome 2. Two other minor loci were mapped between MraopK16-1-Mraopi4-1, on chromosome 9, and between Msuncbnlg1139-MraopR10-2, on chromosome 6. The Rf3 nuclear restoring gene was precisely located on the chromosome 2, 2.29 cM to the left of umc1525 and 8.9 cM to the right of umc1230. The results provide important markers for marker-assisted selection of stable CMS-S maize.  相似文献   

18.
APAGE技术在小麦细胞质雄性不育系选育中的应用研究   总被引:10,自引:0,他引:10  
利用大量小麦亲本材料和优良品种(系)与具有粘果、易变、偏凸和二角山羊草细胞质的小麦雄性不育系杂交,筛选出一系列保持系。利用APAGE(酸性聚丙烯酰胺凝胶电泳)技术对其进行了醇溶蛋白电泳图谱分析,发现大部分保持系表现出1BL/lRS易位系的1RS醇溶蛋白标记位点GldlB3。利用细胞学镜鉴,发现含有GldlB3标记位点的保持系均只含有两个随体,而不含有GldlB3标记位点的保持系均含有4个随体,证明了GldlB3标记位点与两个随体数的一致性。粘、易、偏型不育系育性基本表现一致,而二角型不育系除了与前3种不育系具有相同的保持系以外,对某些小麦品种(系)还表现出育性特异性。同时还讨论了ANGE技术在快速筛选小麦细胞质雄性不育保持系中的作用,为非1BL/1RS不育系的选育提供了必要的手段。  相似文献   

19.
Fusarium head blight (FHB, scab) is a fungal disease of wheat and other small cereals that is found in both temperate and semi-tropical regions. FHB causes severe yield and quality losses, but the most-serious concern is the possible mycotoxin contamination of cereal food and feed. Breeding for FHB resistance by conventional selection is feasible, but tedious and expensive. This study was conducted to identify and map DNA markers associated with FHB resistance genes in wheat. A population of 364 F1-derived doubled-haploid (DH) lines from the cross ’CM-82036’ (resistant)/’Remus’ (susceptible) was evaluated for Type II resistance (spread within the spike) during 2 years under field conditions. Marker analysis was performed on 239 randomly chosen DH lines. Different marker types were applied, with an emphasis on AFLP and SSR markers. Analysis of variance, as well as simple and composite interval mapping, were applied. Three genomic regions were found significantly associated with FHB resistance. The most-prominent effect was detected on the short arm of chromosome 3B, explaining up to 60% of the phenotypic variance for Type II FHB resistance. A further QTL was located on chromosome 5A and a third one on 1B. The QTL regions on 3B and 5A were tagged with flanking SSR markers, the 1B QTL was found associated with the high-molecular-weight glutenin locus. These results indicate that FHB resistance is under control of a few major QTLs operating together with unknown numbers of minor genes. Marker-assisted selection for these major QTLs involved in FHB resistance appears feasible and should accelerate the development of resistant and agronomically improved wheat cultivars. Received: 25 January 2001 / Accepted: 18 February 2001  相似文献   

20.
为了提高黄淮海麦区小麦育种材料的赤霉病抗性,采用分子标记辅助选择的方法,将来自望水白的4个抗赤霉病主效QTL 3B-QTL、4B-QTL、5A-QTL和6B-QTL导入不同的感病背景中,在后代BC1F3和BC1F4株系中评价它们的抗病效应和农艺性状回复情况。结果表明:(1)导入4个抗病QTL株系的平均病小穗率和病粒率分别为12.2%和6.3%,而受体亲本则分别达到59.1%和44.2%,抗病性显著提高;(2)病小穗数和病粒率与穗长及株高极显著负相关,但与可育小穗数、百粒重、旗叶长和旗叶宽等农艺性状指标没有显著相关性。因此,通过导入抗病主效QTL可以显著改善感病材料的抗性,为进一步选育高产抗病品种提供基础材料。不良农艺性状的紧密连锁阻碍着抗赤霉病主效QTL的高效利用,需要通过继续回交或与其他品种杂交来打破这种遗传连锁关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号