首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated and sequenced the gene and the cDNA coding for the human cardiac beta-myosin heavy chain (designated MYH7). The gene is 22,883 bp long. The 1935 amino acids of this protein (Mr223,111) are encoded by 38 exons. The 5' untranslated region (86 bp) is split by two introns. The 3' untranslated region is 114 bp long. Three Alu repeats were identified within the gene and a fourth one in the 3' flanking intergenic region. The molecular organization of this gene reflects the conservative pattern with respect to size, coding ratio, and number or position of introns characteristic of vertebrate sarcomeric myosin heavy chain genes. The protein sequence of the human beta-heavy chain was compared with corresponding (homologous) sequences of rabbit, rat, and hamster as well as with the (heterologous) embryonic heavy chain sequences of rat, chicken, and man. The results show that protein subregions responsible for basic functions of myosin heavy chains (nucleotide binding and actin binding) are very similar in homologous and heterologous heavy chains. Regions that differ in their primary sequences in heterologous heavy chains appear to be highly conserved within mammalian beta-myosin heavy chains. Constant and variable subregions of heavy chains are discussed in terms of functional significance and evolutionary relatedness.  相似文献   

2.
We have isolated and characterized two distinct myosin heavy chain cDNA clones from a neonatal rat aorta cDNA library. These clones encode part of the light meromyosin region and the carboxyl terminus of smooth muscle myosin heavy chain. The two rat aorta cDNA clones were identical in their 5' coding sequence but diverged at the 3' coding and in a portion of the 3' untranslated regions. One cDNA clone, RAMHC21, encoded 43 unique amino acids from the point of divergence of the two cDNAs. The second cDNA clone, RAMHC 15, encoded a shorter carboxyl terminus of nine unique amino acids and was the result of a 39 nucleotide insertion. This extra nucleotide sequence was not present in RAMHC21. The rest of the 3' untranslated sequences were common to both cDNA clones. Genomic cloning and DNA sequence analysis demonstrated that an exon specifying the 39 nucleotides unique to RAMHC15 mRNA was present, together with the 5' upstream common exons in the same contiguous stretch of genomic DNA. The 39 nucleotide exon is flanked on either side by two relatively large introns of approximately 2600 and 2700 bases in size. RNase protection analysis indicated that the two corresponding mRNAs were coexpressed in both vascular and non-vascular smooth muscle tissues. This is the first demonstration of alternative RNA processing in a vertebrate myosin heavy chain gene and provides a novel mechanism for generating myosin heavy chain protein diversity in smooth muscle tissues.  相似文献   

3.
The conventional myosin motor proteins that drive mammalian skeletal and cardiac muscle contraction include eight sarcomeric myosin heavy chain (MyHC) isoforms. Six skeletal MyHCs are encoded by genes found in tightly linked clusters on human and mouse chromosomes 17 and 11, respectively. The full coding regions of only two out of six mammalian skeletal MyHCs had been sequenced prior to this work. In an effort to assess the extent of sequence diversity within the human MyHC family we present new full-length coding sequences corresponding to four additional human genes: MyHC-IIb, MyHC-extraocular, MyHC-IIa and MyHC-IIx/d. This represents the first opportunity to compare the full coding sequences of all eight sarcomeric MyHC isoforms within a vertebrate organism. Sequence variability has been analyzed in the context of available structure/function data with an emphasis on potential functional diversity within the family. Results indicate that functional diversity among MyHCs is likely to be accomplished by having small pockets of sequence diversity in an otherwise highly conserved molecule.  相似文献   

4.
The variable region of the heavy chain of a prototypic anti-DNA autoantibody from the lupus-prone mouse, MRL-lpr/lpr, was cloned and sequenced. The VH and JH genes expressed by this antoantibody were found to be identical to germ line genes from the nonautoimmune mouse strain, BALB/c. The D gene of this autoantibody differed by one nucleotide from several members of the germ line SP2 family, but has been found in expressed D genes from several strains of mice. These results show that a normal mouse strain contains all of the structural information necessary for the expression of the heavy chain variable region of a lupus autoantibody. A fragment that is present in both BALB/c and MRL mice is highly homologous in both coding and flanking sequences to the autoantibody VH gene (VH130) and is the same size as the BALB/c germ line gene. This suggests that these two strains may share the same allele of this VH gene, despite the fact that they are polymorphic for this VH gene family. Other mouse strains that are polymorphic for this locus contained one to three VH genes that were highly related to VH130 in both coding and flanking regions. Thus, VH genes that may be allelic to the antibody VH gene or that may have arisen by gene conversion, unequal crossing over or gene duplication, are conserved in many mouse strains.  相似文献   

5.
We have generated transgenic mice that express a diverse repertoire of human sequence immunoglobulins. The expression of this repertoire is directed by light and heavy chain minilocus transgenes comprised of human protein coding sequences in an unrearranged, germ-line configuration. In this paper we describe the construction of these miniloci and the composition of the CDR3 repertoire generated by the transgenic mice. The largest transgene discussed is a heavy chain minilocus that includes human mu and gamma 1 coding sequences together with their respective switch regions. It consists of a single 61 kb DNA fragment propagated in a bacterial plasmid vector. Both human heavy chain classes are expressed in animals that carry the transgene. In light chain transgenic animals the unrearranged minilocus sequences recombine to form VJ joints that use all five human J kappa segments, resulting in a diversity of human-like CDR3 regions. Similarly, in heavy chain transgenics the inserted sequences undergo VDJ joining complete with N region addition to generate a human-like VH CDR3 repertoire. All six human JH segments and at least eight of the ten transgene encoded human D segments are expressed. The transgenic animals described in this paper represent a potential source of human sequence antibodies for in vivo therapeutic applications.  相似文献   

6.
7.
The nucleotide sequences of the coding as well as the flanking regions of 11 A/J J558 heavy chain variable region (VH) gene segments are presented. Among these J558 VH segments was the unrearranged germline VH gene segment recruited in the predominant A strain-specific anti-arsonate response. Three other VH gene segments that are greater than 92% related to the p-azophenylarsenate (Ars) A VH gene segment were also isolated. Detailed analysis of the nucleotide sequences of these as well as the remaining seven J558 VH gene segments reveal that the J558 VH gene family is composed of distinct, but related, J558 VH subfamilies. Deletion mapping analyses were used to position the Ars A VH gene segment proximally with respect to the DH-JH clusters within the J558 VH gene family and distally with respect to its own J558 subfamily. The documentation of J558 VH subfamilies is discussed in the context of J558 VH family evolution and diversification.  相似文献   

8.
Structure of the rat prolactin gene   总被引:17,自引:0,他引:17  
The organization and sequence of the rat preprolactin gene has been investigated. Analysis of two different plasmids containing pituitary cDNA inserts has provided the complete 681-nucleotide coding sequence of preprolactin as well as 17 nucleotides preceding the initiation codon and 90 nucleotides following the termination codon. Digestion of rat chromosomal DNA with the restriction endonuclease Eco RI followed by size fractionation and hybridization to a labeled prolactin cDNA probe has demonstrated that prolactin genomic sequences are located on 6.0-, 3.9-, and 2.9-kilobase fragments. The 6.0- and 3.9-kilobase fragments were isolated from a library of cloned rat DNA fragments. The sequence of more than 1800 nucleotides of the cloned DNA has been determined. The sequenced region contains coding regions of 180 and 189 nucleotides which specify the COOH-terminal 123 amino acids of the 227-amino-acid sequence of rat preprolactin. These coding regions are separated by an intervening sequence of 597 nucleotides. At least one other large intervening sequence separates this region from the region coding for the NH2-terminal portion of preprolactin. Hybridization experiments suggested that the intervening sequences of the rat prolactin gene contain DNA sequences which are repeated elsewhere in the rat genome.  相似文献   

9.
We isolated and characterized an anti-idiotype monoclonal antibody (AR42.1) which is capable of mimicking a distinct and specific epitope of MUC-1 antigen. The cDNA sequences coding for the AR42.1 variable regions were determined. We found significant amino acid homology between complementary determining regions 3 (CDR3) in the heavy chain of AR42.1 and the determinant epitope sequence of MUC-1. This 10 amino acid sequence may represent an "internal image" of the anti-idiotype antibody to the MUC-1 antigen, and could be used for development of a MUC-1 surrogate for immunotherapy.  相似文献   

10.
Isolation and structure of a rat cytochrome c gene   总被引:18,自引:0,他引:18  
We screened a Charon 4A-rat genomic library using the cloned iso-1 cytochrome c gene from Saccharomyces cerevisiae as a specific hybridization probe. Eight different recombinant phages homologous to a coding region subfragment of the yeast gene were isolated. Nucleotide sequence analysis of a 0.96-kilobase portion of one of these established the existence of a gene coding for a cytochrome c identical in amino acid sequence with that of mouse. The rat polypeptide chain sequence had not previously been determined. In contrast to the yeast iso-1 and iso-2 cytochrome c genes, neither of which have introns, the rat gene contains a single 105-base pair intervening sequence interrupting glycine codon 56. The overall nucleotide sequence homology between cytochrome c genes of yeast and rat is about 62%, with areas of greater homology coinciding with four regions of functionally constrained amino acid sequences. Two of these regions displayed 85-90% DNA sequence homology, including the longest consecutive homologous stretch of 14 nucleotides, corresponding to amino acids 47-52 of the rat protein. Somewhat less homology was observed in the DNA-specifying amino acids 70-80, which are invariant residues in most known cytochrome c molecules. Thermal dissociation of the yeast probe from the homologous rat DNA was at about 58 degrees C in 0.39 M Na+. These results establish that cytochrome c genes may be isolated by interspecies hybridization between widely divergent organisms.  相似文献   

11.
Human myosin heavy chains are encoded by a multigene family consisting of at least 10 members. A gene-specific oligonucleotide has been used to isolate the human beta myosin heavy chain gene from a group of twelve nonoverlapping genomic clones. We have shown that this gene (which is expressed in both cardiac and skeletal muscle) is located 3.6kb upstream of the alpha cardiac myosin gene. We find that DNA sequences located upstream of rat and human alpha cardiac myosin heavy chain genes are very homologous over a 300bp region. Analogous regions of two other myosin genes expressed in different muscles (cardiac and skeletal) show no such homology to each other. While a human skeletal muscle myosin heavy chain gene cluster is located on chromosome 17, we show that the beta and alpha human cardiac myosin heavy chain genes are located on chromosome 14.  相似文献   

12.
The rat alpha- and bovine alpha s1-casein genes have been isolated and their 5' sequences determined. The rat alpha-, beta-, gamma- and bovine alpha s1-casein genes contain similar 5' exon arrangements in which the 5' noncoding, signal peptide and casein kinase phosphorylation sequences are each encoded by separate exons. These findings support the hypothesis that during evolution, the family of casein genes arose by a process involving exon recruitment followed by intragenic and intergenic duplication of a primordial gene. Several highly conserved regions in the first 200 base pairs of the 5' flanking DNA have been identified. Additional sequence homology extending up to 550 base pairs upstream of the CAP site has been found between the rat alpha- and bovine alpha s1-casein sequences. Unexpectedly, the 5' flanking promoter regions are conserved to a greater extent than both the entire mature coding and intron regions of these genes. These conserved 5' flanking sequences may contain potential cis regulatory elements which are responsible for the coordinate expression of the functionally-related casein genes during mammary gland development.  相似文献   

13.
Partial and complete genome duplications occurred during evolution and resulted in the creation of new genes and gene families. We identified a novel and intricate human gene family located primarily in regions of segmental duplications on human chromosome 1. We named it NBPF, for neuroblastoma breakpoint family, because one of its members is disrupted by a chromosomal translocation in a neuroblastoma patient. The NBPF genes have a repetitive structure with high intragenic and intergenic sequence similarity in both coding and noncoding regions. These similarities might expose these genomic regions to illegitimate recombination, resulting in structural variation in the NBPF genes. The encoded proteins contain a highly conserved domain of unknown function, which we have named the NBPF repeat. In silico analysis combined with the isolation of multiple full-length cDNA clones showed that several members of this gene family are abundantly expressed in a large variety of tissues and cell lines. Strikingly, no discernable orthologues could be identified in the completed genomes of fruit fly, nematode, mouse, or rat, but sequences with low homology could be isolated from the draft canine and bovine genomes. Interestingly, this gene family shows primate-specific duplications that result in species-specific arrays of NBPF homologous sequences. Overall, this novel NBPF family reflects the continuous evolution of primate genomes that resulted in large physiological differences, and its potential role in this process is discussed.  相似文献   

14.
As part of our studies on the fate of the muscle lineage during amphibian limb regeneration, we have isolated genomic and cDNA sequences from a myosin heavy chain in the newt (Notophthalmus viridescens). Notwithstanding the technical problems inherent in analysing the large newt genome, genomic and cDNA sequences have been isolated and subjected to analysis by restriction mapping. Northern hybridization, Southern hybridization and DNA sequencing. We believe these to be the first single copy newt gene sequences to have been subjected to this type of analysis. The newt gene sequences showed a striking difference from mammalian myosins in both the estimated sizes of the gene and its intervening sequences; these being much larger than in the mammalian models, it is speculated that this could contribute to the exceptional size of the newt genome. By contrast, the coding sequences displayed very high levels of sequence homology to mammalian myosins. In particular, the amino acid sequence of the newt myosin was found to have greatest homology with rat and human myosin isotypes having a similar cardio-skeletal muscle expression pattern. Despite a long evolutionary separation, newt and mammalian cardio-skeletal myosins have remained more similar to each other than have the human or rat cardiac forms to skeletal myosins within their own respective species.  相似文献   

15.
16.
The two cardiac myosin heavy chain isoforms, alpha and beta, differ functionally, alpha Myosin exhibits higher actin-activated ATPase than does beta myosin, and hearts expressing alpha myosin exhibit increased contractility relative to hearts expressing beta myosin. To understand the molecular basis for this functional difference, we determined the complete nucleotide sequence of full-length rat alpha and beta myosin heavy chain cDNAs. This study represents the first opportunity to compare full-length fast ATPase and slow ATPase muscle myosin sequences. The alpha and beta myosin heavy chain amino acid sequences are more related to each other than to other sarcomeric myosin heavy chain sequences. Of the 1938 amino acid residues in alpha and beta myosin heavy chain, 131 are non-identical with 37 non-conservative changes. Two-thirds of these non-identical residues are clustered, and several of these clusters map to regions that have been implicated as functionally important. Some of the regions identified by the clusters of non-identical amino acid residues may affect actin binding, ATP hydrolysis and force production.  相似文献   

17.
cDNAs encoding the entire coding regions of the precursors (p) of rat long chain acyl-CoA (LCAD), short chain acyl-CoA (SCAD) and isovaleryl-CoA dehydrogenase (IVD) have been cloned and sequenced. Three cDNAs for rat liver LCAD together cover a 1440-base pair region. These cDNAs encode the entire 430-amino acid sequence of pLCAD, including the 30-amino acid leader peptide and the 400-amino acid mature LCAD. A single 1773 base pair cDNA for rat SCAD covers the entire coding region (414 amino acids), including the 26-amino acid leader peptide and the 388-amino acid mature peptide. Four identified IVD cDNAs, when combined, encompass a 2104 base region, and encode 424 amino acids including a 30-amino acid leader peptide and the 394-amino acid mature peptide. The identities of all cDNA clones have been confirmed by matching the amino acid sequences predicted from the respective cDNAs to the amino-terminal and tryptic peptide sequences derived from the corresponding purified rat enzyme. Comparison of the sequences of four rat acyl-CoA dehydrogenases, including LCAD, MCAD, SCAD, and IVD, and two of their human counterparts (MCAD and SCAD) reveals a high degree of homology (57 invariant and 92 near invariant residues: 30.6-35.4% of identical residues in pairwise comparisons), suggesting that these enzymes belong to a gene family and have evolved from a common ancestral gene.  相似文献   

18.
Two genomic fragments were isolated from a normal and a dystrophic library containing the 3'OH terminus of the fast isoform of myosin heavy chain gene. Restriction map analysis confirmed that the genes were similar. The sequences coding for myosin were defined and shown to be the same in each genomic fragment. However, using a cDNA clone for tcRNA102 and two specific oligomers for tcRNA102 sequences, we determined that only the genomic fragment from normal chick contained homologous sequences to tcRNA102. Dystrophic chick DNA did not contain these regions of homology. In addition, the normal genomic fragment transcribes tcRNA102 in vitro via RNA polymerase III while the corresponding fragment of DNA from dystrophic chick was inactive. These results suggest that there are detectable differences between the normal and dystrophic genomes in this regard.  相似文献   

19.
Nucleotide sequences of mRNAs were compared between major calcium-sensitive caseins of cow (αs1-casein) and rat (α-casein). A best fit alignment of the two sequences showed homology of 81% and 69% for the 5′- and 3′-untranslated regions, respectively. Homology in the comparable coding region of the mature asl-casein (76% of total codons) was remarkably lower at amino acid level (46%) than at nucleotide level (69%). The low conservation at amino acid level is explained by the unusual nucleotide substitution pattern (random at all three positions of codons) in contrast to synonymous substitutions at the third position revealed on comparison of other related proteins. The evolutionary distances among the number of the casein family were estimated by comparing known nucleotide sequences of the signal peptides which were the most conserved coding regions in the family. The divergence time for most distantly related caseins (both rat α-casein/rat β-casein and rat α-casein/mouse ε-casein) was estimated to be about 170 million years.  相似文献   

20.
The complete sequence for the constant and 3' untranslated regions of a mouse gamma 2a immunoglobulin heavy chain mRNA is reported. The sequence is 1093 nucleotides long coding for the CH1 (amino-acids 118-214), the Hinge (215-230), the CH2 (231-340) and the CH3 (341-447). The 3' untranslated region is 103 nucleotides long preceding the poly(A). The nucleotide sequence predicts as in the case for gamma 1 and gamma 2b heavy chains an additional lysine residue before the termination codon. This sequence has been compared to the corresponding sequences of gamma 1 and gamma 2b heavy chain mRNAs. These sequences are respectively 75% and 84% homologous. The CH2 domains of gamma 2a and gamma 2b are 95% homologous at the nucleotide level. The cross-over point of a gamma 2a - gamma 2b heavy chain variant is located in a segment of 73 perfectly matching nucleotides. The 3' non coding regions of gamma 2a and gamma 2b are 89% homologous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号