首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Highly purified, papain-solubilized HLA-A, -B, and -C antigens comprising a mixture of a great number of allelic forms from at least three loci have been fragmented by limited proteolysis, acid cleavage, and cyanogen bromide treatment. Limited proteolysis of 125I-labeled HLA-A, -B, and -C antigens with trypsin, chymotrypsin, thermolysin, and pepsin resulted in the production of two large fragments. One fragment was associated with beta 2-microglobulin and contained all of the carbohydrate. The other fragment, which had a molecular weight of about 13,000, is most probably derived from the COOH-terminal part of the heavy chain. Acid cleavage of the HLA antigen heavy chain gave rise to two main fragments with molecular weights of 22,000 and 11,000. Both fragments contained disulfide bonds. Two minor components, representing further cleavage products of the 22,000-dalton fragment, were also observed. Cleavage of the HLA antigen heavy chain at methionyl residues gave rise to one carbohydrate-containing, cysteine-free 14,000-dalton fragment and one 20,000-dalton fragment that contained all cysteines but no carbohydrate. NH2-terminal amino acid sequence analyses demonstrated that the 22,000-dalton acid cleavage fragment and the 14,000-dalton cyanogen bromide fragment were derived from the NH2-terminal part of the HLA antigen heavy chain.  相似文献   

2.
Five sulfhydryl groups of band 3, the anion-transport protein of the red blood cell membrane, can be labeled byN-ethylmaleimide (NEM). Two of these are located in a 35,000-dalton, C-terminal segment produced by chymotrypsin treatment of cells. Extensive treatment of unsealed ghosts with chymotrypsin results in the disappearance of the 35,000-dalton segment, but its two NEM-binding sites are preserved in a 9000-dalton peptide. The latter must therefore be a proteolytic product of the larger segment. Labeling of sulfhydryl groups of band 3 by an impermeant analog of NEM occurs in inside-out, but not in right-side-out vesicles derived from red cell ghosts, supporting the conclusion that NEM-reactive sulfhydryl groups, including those in the 35,000- and 9000-dalton segments, are exposed at the cytoplasmic face of the membrane. These findings support the conclusion that the 35,000-dalton segment crosses the bilayer, and suggest that the 9000-dalton segment may be a membrane-crossing portion of the 35,000-dalton segment.  相似文献   

3.
Reconstituted proteoliposomes containing Neurospora plasma membrane H+-ATPase molecules oriented predominantly with their cytoplasmic portion facing outward have been used to determine the location of the NH2 and COOH termini of the H+-ATPase relative to the lipid bilayer. Treatment of the proteoliposomes with trypsin in the presence of the H+-ATPase ligands Mg2+, ATP, and vanadate produces approximately 97-, 95-, and 88-kDa truncated forms of the H+-ATPase similar to those already known to result from cleavage at Lys24, Lys36, and Arg73 at the NH2-terminal end of the molecule. These results establish that the NH2-terminal end of the H+-ATPase polypeptide chain is located on the cytoplasmic side of the membrane. Treatment of the same proteoliposome preparation with trypsin in the absence of ligands releases approximately 50 water-soluble peptides from the proteoliposomes. Separation of the released peptides by high performance liquid chromatography and spectral analysis of the purified peptides identified only a few peptides with the properties expected of a COOH-terminal, tryptic undecapeptide with the sequence SLEDFVVSLQR, and NH2-terminal amino acid sequence analysis identified this peptide among the possible candidates. Quantitative considerations indicate that this peptide must have come from H+-ATPase molecules oriented with their cytoplasmic portion facing outward, and could not have originated from a minor population of H+-ATPase molecules of reverse orientation. These results directly establish that the COOH-terminal end of the H+-ATPase is also located on the cytoplasmic side of the membrane. These findings are important for elucidating the topography of the membrane-bound H+-ATPase and are possibly relevant to the topography of other aspartyl-phosphoryl-enzyme intermediate ATPases as well.  相似文献   

4.
G J Chin 《Biochemistry》1985,24(21):5943-5947
Purified dog kidney (Na+,K+)-ATPase was reacted with tritiated sodium borohydride after treatment with neuraminidase and galactose oxidase. This procedure did not affect the ATPase activity of the enzyme, and all of the covalently bound radioactivity was found in the beta subunit (Mr 54 000). Papain digestion of the tritiated enzyme produced two labeled fragments of Mr 40 000 and 16 000. Further proteolysis generated an Mr 31 000 peptide from the larger fragment. Unlike the tryptic and chymotryptic sites of the alpha subunit, the sites of papain hydrolysis were insensitive to conformations of the (Na+,K+)-ATPase. Determination of the NH2-terminal sequences was used to arrange the fragments within the linear map of the beta chain. Finally, none of the labeled peptides was released from the membrane under nondenaturing conditions. These results are consistent with a model of the beta subunit containing a 40 000-dalton NH2-terminal piece and a 16 000-dalton COOH-terminal piece. Both fragments have extracellularly exposed carbohydrate and at least one membrane-bound domain.  相似文献   

5.
The (Ca2+ + Mg2+)-adenosine triphosphatase (ATPase) of sarcoplasmic reticulum contains a cysteine residue at position 12 of its sequence. This sulfhydryl group was 1 out of a total of 10-11 that were labeled by treatment of sarcoplasmic reticulum vesicles with N-[3H]ethylmaleimide under saturating conditions. This was shown by isolating a 31-residue NH2-terminal peptide from a tryptic digest of the succinylated ATPase, prepared from N-[3H]ethylmaleimide-labeled vesicles. Reaction of the vesicles with glutathione maleimide, parachloromercuribenzoic acid, or parachloromercuriphenyl sulfonic acid, membrane-impermeant reagents, prevented further reaction of sulfhydryl groups with N-ethylmaleimide. This result indicates that all sulfhydryl groups that are reactive with N-ethylmaleimide are on the outside of the vesicles. Since Cys12 is located in a hydrophilic NH2-terminal portion of the ATPase, the labeling results suggest that the NH2 terminus of the ATPase is on the cytoplasmic side of the membrane. These results are consistent with earlier observations (Reithmeier, R. A. F., de Leon, S., and MacLennan, D. H. (1980) J. Biol. Chem. 255, 11839-11846) that the (Ca2+ + Mg2+)-ATPase is synthesized without an NH2-terminal signal sequence.  相似文献   

6.
cGMP-dependent protein kinase from bovine lung is labile to specific proteolysis. Limited digestion with chymotrypsin produces a 65,000-dalton monomer and a 16,000-dalton dimer from a 150,000-dalton dimeric enzyme. The larger proteolytic fragment represents the COOH-terminal portion of the enzyme and contains the catalytic site along with the cGMP binding site. The smaller fragment representing the NH2-terminal portion of the enzyme contains the autophosphorylation site and the interchain disulfide bond(s). A model defining the functional domains of cGMP-dependent protein kinase is presented and comparisons with cAMP-dependent protein kinase regulatory subunit are discussed.  相似文献   

7.
Coagulation factor Va is a cofactor which combines with the serine protease factor Xa on a phospholipid surface to form the prothrombinase complex. The phospholipid-binding domain of bovine factor Va has been reported to be located on the light chain of the molecule and more precisely on a fragment of Mr = 30,000 which is obtained after digestion of factor Va light chain by factor Xa. This proteolytic fragment is located in the NH2-terminal part of factor Va light chain (residues 1564-1765). In order to further characterize the lipid-binding domain of bovine factor Va, isolated bovine light chain was preincubated with synthetic phospholipid vesicles (75% phosphatidylcholine, 25% phosphatidylserine) and digested with trypsin, chymotrypsin, and elastase. Two peptide regions protected from proteolytic cleavage were identified and characterized from each proteolytic digestion. A comparison of the NH2-terminal sequence and amino acid composition of the two tryptic peptides with the deduced sequence of human factor V indicates a match with residues 1657-1791 of the light chain of human factor V for one peptide and residues 1546-1656 for the other peptide. When chymotrypsin or elastase were used for digestion, the NH2-terminal sequence of one peptide showed a match with residues 1667-1797 of the light chain, while the other peptide presented an NH2-terminal sequence identical with the previously described for the bovine factor Va light chain. When these peptides were assayed for direct binding to phospholipid vesicles, only the tryptic and the chymotryptic peptides covering the middle region of the A3 domain of the bovine factor Va light chain demonstrated an ability to interact with phospholipid vesicles. Thus, knowing that the factor Xa cleavage site on the factor Va light chain is located between residues 1765 and 1766 of the light chain this lipid-binding region of the bovine factor Va is further localized to amino acid residues 1667-1765.  相似文献   

8.
The exposure of the carboxyl-terminal of the Band 3 protein of human erythrocyte membranes in intact cells and membrane preparations to proteolytic digestion was determined. Carboxypeptidase Y digestion of purified Band 3 in the presence of non-ionic detergent released amino acids from the carboxyl-terminal of Band 3. The release of amino acids was very pH dependent, digestion being most extensive at pH 3, with limited digestion at pH 6 or above. The 55,000 dalton carboxyl-terminal fragment of Band 3, generated by mild trypsin digestion of ghost membranes, had the same carboxyl-terminal sequence as intact Band 3, based on carboxypeptidase Y digestion. Treatment of intact cells with trypsin or carboxypeptidase Y did not release any amino acids from the carboxyl-terminal of Band 3. In contrast, carboxypeptidase Y readily digested the carboxyl-terminal of Band 3 in ghosts that were stripped of extrinsic membrane proteins by alkali or high salt. This was shown by a decrease in the molecular weight of a carboxyl-terminal fragment of Band 3 after carboxypeptidase Y digestion of stripped ghost membranes. No such decrease was observed after carboxypeptidase Y treatment of intact cells. In addition, Band 3 purified from carboxypeptidase Y-treated stripped ghost membranes had a different carboxyl-terminal sequence from intact Band 3. Cleavage of the carboxyl-terminal of Band 3 was also observed when non-stripped ghosts or inside-out vesicles were treated with carboxypeptidase Y. However, the digestion was less extensive. These results suggest that the carboxyl-terminal of Band 3 may be protected from digestion by its association with extrinsic membrane proteins. We conclude, therefore, that the carboxyl-terminal of Band 3 is located on the cytoplasmic side of the red cell membrane. Since the amino-terminal of Band 3 is also located on the cytoplasmic side of the erythrocyte membrane, the Band 3 polypeptide crosses the membrane an even number of times. A model for the folding of Band 3 in the erythrocyte membrane is presented.  相似文献   

9.
A prolyl endopeptidase was purified from Flavobacterium meningosepticum. It was digested with trypsin. Two oligonucleotides, based on tryptic peptide sequences and used in PCR experiments, amplified a 300-base pair (bp) fragment. A 2.4-kilobase EcoRI fragment that hybridized to the 300-bp probe was cloned in lambda ZAP and sequenced from both strands. It contains a reading frame of 2115 bp, encoding the complete protein sequence of 705 amino acids. Ion-spray mass spectrometry experiments demonstrated the presence of an NH2-terminal signal peptide: the periplasmic mature protease is 685 residues in length for a molecular mass of 76784 Da. The prolyl endopeptidase showed no general sequence homology with known protein sequences except with that of porcine brain prolyl endopeptidase. In order to identify the active-site serine, the prolyl endopeptidase was labeled with [3H]diisopropyl fluorophosphate. One labeled peptide was purified and sequenced. The active-site serine was located in position 536 within the sequence GRSNGG. This sequence is different from the active-site sequence of the trypsin (GDSGGP) and subtilisin (GTSMAS) families.  相似文献   

10.
M M Stephan  G R Jacobson 《Biochemistry》1986,25(25):8230-8234
Two proteolytic fragments of the Escherichia coli mannitol permease (EIImtl) have been identified on autoradiograms of sodium dodecyl sulfate-polyacrylamide gels and mapped with respect to the membrane. EIImtl was selectively radiolabeled with either [35S]methionine or a mixture of 14C-labeled amino acids in E. coli minicells harboring a plasmid containing the mannitol operon. The intact permease (Mr 65,000) in everted vesicles derived from labeled minicells was cleaved by mild trypsinolysis into two smaller fragments (Mr 34,000 and 29,000). The 34,000-dalton fragment remained in the membrane and was insensitive to further proteolysis by trypsin. This fragment was identified as the N-terminal half of the protein by comparing the amount of the original [35S]methionine label that it retained with the known differential distribution of methionine in the two halves of EIImtl. The 29,000-dalton fragment, which was released into the soluble fraction and was sensitive to further trypsinolysis, therefore corresponds to the C-terminal half of the mannitol permease. Both fragments were shown to be antigenically related to EIImtl by immunoblotting with anti-EIImtl antibody. The 34,000-dalton fragment was further shown to form an oligomer under conditions which allow the intact enzyme to dimerize, suggesting that this domain plays an important role in EIImtl subunit interactions. These results support a model in which EIImtl consists of two domains of approximately equal size: a membrane-bound, N-terminal domain with a tendency to self-associate, and a cytoplasmic C-terminal domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The topology of beef heart Complex III has been studied by tryptic and chymotryptic digestion of isolated Complex III, Mg2+-ATP submitochondrial particles, and mitoplasts. Degradation products were detected by the immunoreplication technique using specific antibodies against core protein 1 (50 K) and core protein 2 (47 K). It can be shown that both peptides are digested from the matrix side of the inner membrane. However, no evidence was found that these peptides were digested by trypsin or chymotrypsin from the cytoplasmic side. It is concluded that the beef heart core proteins are membrane-bound peptides containing tryptic and chymotryptic digestion sites only on the matrix surface of the inner membrane. The data also suggest that beef heart core protein 2 contains multiple domains which are inserted into the membrane from the matrix surface. Proteolytic treatment of submitochondrial particles under conditions which digested at least 50% of the core proteins from the matrix surface did not, however, influence NADH oxidation rates or the respiratory control ratios.  相似文献   

12.
Urinary trypsin inhibitor (UTI), a Kunitz-type protease inhibitor, directly binds to some types of cells via cell-associated UTI-binding proteins (UTI-BPs). Here we report that the 40-kDa protein (UTI-BP(40)) was purified from the cultured human chondrosarcoma cell line HCS-2/8 by UTI affinity chromatography. Purified UTI-BP(40) was digested with trypsin, and the amino acid sequences of the peptide fragments were determined. The sequences of six tryptic fragments of UTI-BP(40) were identical to subsequences present in human link protein (LP). Authentic bovine LP and UTI-BP(40) displayed identical electrophoretic and chromatographic behavior. The UTI-binding properties of UTI-BP(40) and LP were indistinguishable. Direct binding and competition studies strongly demonstrated that the NH(2)-terminal fragment is the UTI-binding part of the LP molecule, that the COOH-terminal UTI fragment (HI-8) failed to bind the NH(2)-terminal subdomain of the LP molecule, and that LP and UTI-BP(40) exhibited significant hyaluronic acid binding. These results demonstrate that UTI-BP(40) is identical to LP and that the NH(2)-terminal domain of UTI is involved in the interaction with the NH(2)-terminal fragment of LP, which is bound to hyaluronic acid in the extracellular matrix.  相似文献   

13.
The purpose of this work has been to examine the organization of the intramembranous portion of the alpha-subunit of membrane-bound (Na,K)-ATPase. Covalent labeling of the alpha-subunit and its tryptic fragments from within the lipid bilayer with [125I]iodonaphthylazide was combined with covalent labeling with 32P from [gamma-33P]ATP at the cytoplasmic surface and with [3H]N-(ouabain)-N'-(2-nitro-4-azidophenyl)ethylenediamine from the extra cellular surface. In control experiments using extensive proteolysis and reduced glutathione, it is confirmed that iodonaphthylazide labels segments of the protein within the lipid bilayer. The labeled segments of the alpha-subunit, produced by extensive proteolysis, are selectively extracted by organic solvents. Both at a low and at a high concentration of iodonaphthylazide, about 50% of label added to the medium is covalently attached to protein and lipid. At the low iodonaphthylazide concentration, the NH2-terminal Mr = 46,000 (46K) fragment of the alpha-subunit is preferentially labeled, while at the higher concentration of the 46K fragment, the 78K fragment, and the COOH-terminal 58K fragment are labeled. 32P from [gamma-32P]ATP is incorporated into the 46K fragment while [3H]N-(ouabain)-N'-(2-nitro-4-azido-phenyl)ethylenediamine from the extracellular surface labels all the major fragments, 78K, 58K, and 46K. The data provide evidence for a model of the path of the polypeptide chain with multiple traverses of the alpha-subunit across the bilayer and the NH2-terminal and three trypsin-sensitive bonds exposed at the cytoplasma surface.  相似文献   

14.
T L Steck  B Ramos  E Strapazon 《Biochemistry》1976,15(5):1153-1161
Band 3 is the major, membrane-spanning, approximately90 000 dalton polypeptide of the human erythrocyte membrane. To facilitate the analysis of its structural integration into the membrane, we have cleaved this protein in situ into large fragments and ascertained their disposition. Digestion of intact cells with chymotrypsin yielded band 3 fragments with apparent molecular weights of 38 000 and 55 000. Both fragments resisted elution by NaOH and acetic acid, suggesting that they are anchored in the apolar core of the membrane. Both pieces communicate with the extracellular space, and the 55 000 dalton species extends to the cytoplasmic surface as well. Digestion of unsealed ghosts with chymotrypsin produced a hydrophobic 17 000 dalton species, a segment of the 55 000 dalton fragment, which spans and is firmly anchored in the core of the membrane. Trypsin and papain at low concentration generated integral band 3 fragments of 52 000 daltons and released major band 3 fragments of less than or equal to 41 000 daltons from the cytoplasmic side of the membrane. The latter water-soluble polypeptides remained associated in discrete complexes which retained the capacity to bind glyceraldehyde-3-phosphate dehydrogenase. An interchain disulfide bond, which can be induced only at the cytoplasmic surface, cross-linked intact band 3, and certain of its water-soluble fragments. Finally, fragments of 23 000 daltons were generated from the innersurface domain by reacting disulfide-linked band 3 dimers with cyanide or reduced polypeptides with 2-nitro-5-thiocyanobenzoate. A provisional ordering of these fragments is proposed.  相似文献   

15.
Structural characteristics of the mouse transferrin receptor   总被引:3,自引:0,他引:3  
Rat monoclonal antibodies against mouse transferrin receptor have been used to isolate and characterize the mouse receptor molecule. The molecule is a dimeric glycoprotein of Mr 200 000 resembling its human homolog of Mr 190 000. Receptor molecules prepared from different lymphoid cell populations show structural differences which can be explained by variations in the carbohydrate moiety of the molecule. Both the antibody-binding site and the transferrin-binding site are located on tryptic fragments of Mr 80 000 on the extracellular part of the molecule. After trypsin treatment, these fragments are partially retained at the cell surface, probably non-covalently bound to one intact receptor subunit, but they are released at higher trypsin concentrations. The soluble fragments retain their ability to bind transferrin and appear to exist as dimers. In this fragment, there are no disulfide bonds present. Disulfide bonds are located near the plasma membrane. Studies using a cleavable cross-linker indicated the presence of cross-linking sites at the intramembranous or the cytoplasmic part of the molecule.  相似文献   

16.
Treatment of the purified, reconstituted, human erythrocyte glucose transporter with trypsin lowered its affinity for cytochalasin B more than 2-fold, and produced two large, membrane-bound fragments. The smaller fragment (apparent Mr 18000) ran as a sharp band on sodium dodecyl sulphate (SDS)/polyacrylamide-gel electrophoresis. When the transporter was photoaffinity labelled with [4-3H]cytochalasin B before tryptic digestion, this fragment became radiolabelled and so probably comprises a part of the cytochalasin B binding site, which is known to lie on the cytoplasmic face of the erythrocyte membrane. In contrast, the larger fragment was not radiolabelled, and ran as a diffuse band on electrophoresis (apparent Mr 23000-42000). It could be converted to a sharper band (apparent Mr 23000) by treatment with endo-beta-galactosidase from Bacteroides fragilis and so probably contains one or more sites at which an oligosaccharide of the poly(N-acetyl-lactosamine) type is attached. Since the transporter bears oligosaccharides only on its extracellular domain, whereas trypsin is known to cleave the protein only at the cytoplasmic surface, this fragment must span the membrane. Cleavage of the intact, endo-beta-galactosidase-treated, photoaffinity-labelled protein at its cysteine residues with 2-nitro-5-thiocyanobenzoic acid yielded a prominent, unlabelled fragment of apparent Mr 38000 and several smaller fragments which stained less intensely on SDS/polyacrylamide gels. Radioactivity was found predominantly in a fragment of apparent Mr 15500. Therefore it appears that the site(s) labelled by [4-3H]cytochalasin B lies within the N-terminal or C-terminal third of the intact polypeptide chain.  相似文献   

17.
The complete amino acid sequence of the mangano superoxide dismutase from Escherichia coli B has been deduced through characterization of peptides from cyanogen bromide, bromonitrophenylsulfenyl skatole, citraconylated tryptic, and succinylated tryptic digests of the intact polypeptide chain and through subfragmentation of selected peptides with chymotrypsin, thermolysin, trypsin, and Staphylococcus aureus V8 extracellular protease. No significant homology is detected on comparison with the sequence of the copper- and zinc-containing superoxide dismutase from bovine erythrocytes, indicating that the manganese-iron and the copper-zinc classes of dismutases arose from independent evolutionary ancestors, a proposal previously based solely on enzymological and NH2-terminal sequence data. The amino acid sequence listed below corresponds to a molecular weight of 22,900 and appears to be identical in each subunit polypeptide of the native enzyme dimer. formula: (see text).  相似文献   

18.
The (Ca2+ + Mg2+)-dependent ATPase of sarcoplasmic reticulum has been shown to ast as a Ca2+-dependent and selective ionophore in artificial lipid bilayers. Four fragments of 55,000, 45,000, 30,000, and 20,000 daltons have been purified from tryptic digests of the enzyme and it has been shown that the 55,000- and 45,000-dalton fragments are obtained from a single cleavage of the 100,000-dalton ATPase, while the 30,000- and 20,000-dalton fragments are obtained subsequently by a cleavage of the 55,000-dalton fragment. The 55,000- and 20,000-dalton fragments have ionophore activity inhibited by ruthenium red and by mercuric chloride but not by methylmercuric chloride, an inhibitor of the hydrolytic site of the enzyme. Under standard conditions the 45,000-dalton fragment was not active as an ionophore, while the 30,000-dalton fragment acted as a nonselective ionophore. The 55,000- and 30,000-dalton fragments have been shown to contain the site of phosphorylation and of N-ethyl [2-3H]-maleimide binding indicative of the hydrolytic site in the enzyme, and this site is absent from the 20,000-dalton fragment. Therefore, the ionophoric and hydrolytic sites are localized in separate regions of the ATPase molecule and they have now been physically separated. The 20,000-dalton fragment was degraded with cyanogen bromide and fragments were separated by molecular sieving. Ionophore activity was found in fragments of molecular mass less than 2,000 daltons.  相似文献   

19.
Microsomal glutathione transferase. Primary structure   总被引:8,自引:0,他引:8  
The primary structure of rat liver microsomal glutathione transferase has been determined. The 14C-carboxymethylated protein was fragmented with CNBr and proteolytic enzymes. The basis of the analysis was information from sequenator degradations of the intact protein, the largest CNBr fragment, and a large COOH-terminal fragment derived from a digest with Glu-specific staphylococcal protease. Remaining, smaller fragments were analyzed with the manual dimethylaminoazobenzene isothiocyanate method. Pepsin and limited acid hydrolysis were used to obtain peptides to confirm and overlap hydrophobic structures in the COOH-terminal half of the protein where trypsin and chymotrypsin failed to give any cleavage. Combined, these data permit the deduction of a 154-residue amino acid sequence. No evidence for micro-heterogeneity was obtained. The NH2-terminal alanine residue has a free alpha-amino group and the cysteine residue involved in activation of the enzymatic activity by sulfhydryl reagents is at position 49. The protein chain contains three regions with predictions for long beta strand secondary structures (positions 11-26, 103-120, and 131-145). Predictions may be inaccurate in membrane-associated proteins, but two of these regions also affect the three most hydrophobic segments. Thus, residues 11-35 form a long, largely hydrophobic part interrupted by only one charged residue (Lys-25), and residues 81-97 and 114-126 constitute the most hydrophobic segments directly noticeable from the hydrophilicity curve of the protein chain. These special parts of the molecule are of interest in relation to membrane interactions.  相似文献   

20.
The simian virus 40 (SV40) large T antigen was immunoprecipitated from extracts of infected monkey cells and cleaved with trypsin under conditions of mild proteolysis. The digestion generated fragments from the NH2-terminal region of T antigen which were released from the immunoprecipitates. Pulse-chase experiments showed that most of the newly made T antigen (form A) generated an NH2-terminal fragment of 17 kDa in size, whereas most of the T antigen that had aged in the cell (form C) generated a fragment of 20 kDa. An intermediate form of T antigen (form B), which generated an 18.5- kDa NH2-terminal fragment, was produced in part from form A and was converted to form C during the chase. Phosphate-labeling experiments showed that form C was the species of T antigen that incorporated the most 32P radioactivity at the NH2-terminal region, although some label was also incorporated into forms A and B. In vitro dephosphorylation of gel-purified 18.5- and 20-kDa fragments labeled with [35S]methionine increased the electrophoretic mobility of the fragments to that of 17 kDa. This signified that phosphorylation of the NH2-terminal fragments was directly responsible for their aberrant behavior in acrylamide gels. Although peptide maps of the methionine-labeled tryptic peptides of the 17-, 18.5-, and 20-kDa fragments were very similar to one another, maps of the 32P-labeled tryptic Pronase E peptides of these fragments contained qualitative and quantitative differences. Analysis of the labeled phosphoamino acids of various peptides from these fragments indicated that the 20-kDa fragment was highly phosphorylated at Ser 123 and Thr 124, whereas the 17- and 18.5-kDa fragments were mostly unphosphorylated at these sites. These experiments indicated that T antigen is phosphorylated at the NH2-terminal region in a specific stepwise process and, therefore, that this post-translational modification of T antigen is tightly regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号