首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mathematical model was developed to describe a dialysis process for the continuous fermentation of whey lactose to lactic acid, with neutralization to a constant pH by ammonia. In the process, whey of a relatively high concentration is fed into the fermentor circuit at a relatively low rate so that the residual concentration of lactose is low. The fermentor effluent contains ammonium lactate, bacterial cells, and residual whey solids and could be used as a nitrogen-enriched feedstuff for ruminant animals. Only water is fed into the dialysate circuit at a relatively high rate. The dialysate effluent contains purified ammonium lactate and could be converted to lactic acid and ammonium sulfate for industry. The fermentation was specifically modeled as a set of equations representing material balances and rate relationships in the two circuits. Dialysis continuous fermentations, in general, were modeled by combining these equations and by using dimensionless parameters. The generalized model was then solved for the steady state and used to simulate the specific fermentation on a digital computer. The results showed the effects of various material and operational and kinetic parameters on the process and predicted that it could be operated efficiently.  相似文献   

2.
Laboratory experiments were conducted to validate theoretical predictions describing a dialysis continuous process for the fermentation of whey lactose to ammonium lactate, in which the fermentor contents are poised at a constant pH by adding ammonia solution and dialyzed through a membrane against water. Dried sweet-cheese whey was rehydrated to contain 230 mg of lactose per ml, supplemented with 8 mg of yeast extract per ml, charged into a 5-liter fermentor without sterilization, adjusted in pH (5.3) and temperature (44°C), and inoculated with Lactobacillus bulgaricus. The fermentor and dialysate circuits were connected, and steady-state conditions were established. A series of such conditions was managed nonaseptically for 94 days to study the process and to demonstrate efficiency and productivity. As time progressed, the fermentation remained homofermentative and increased in conversion efficiency, although membrane fouling necessitated dialyzer cleaning about every 4 weeks. With a retention time of 19 h, 97% of the substrate was converted into products. Relative to nondialysis continuous or batch processes for the fermentation, the dialysis continuous process enabled the use of more concentrated substrate, was more efficient in the rate of substrate conversion, and additionally produced a second effluent of less concentrated but purer ammonium lactate.  相似文献   

3.
4.
An alternative method for the conversion of cheese whey lactose into ethanol has been demonstrated. With the help of continuous-culture technology, a catabolite repression-resistant mutant of Saccharomyces cerevisiae completely fermented equimolar mixtures of glucose and galactose into ethanol. The first step in this process was a computer-controlled fed-batch operation based on the carbon dioxide evolution rate of the culture. In the absence of inhibitory ethanol concentrations, this step allowed us to obtain high biomass concentrations before continuous fermentation. The continuous anaerobic process successfully incorporated a cell-recycle system to optimize the fermentor productivity. Under conditions permitting a low residual sugar concentration (≤1%), maximum productivity (13.6 g liter−1 h−1) was gained from 15% substrate in the continuous feed at a dilution rate of 0.2 h−1. Complete fermentation of highly concentrated feed solutions (20%) was also demonstrated, but only with greatly diminished fermentor productivity (5.5 g liter−1 h−1).  相似文献   

5.
For the purpose of obtaining L-asparaginase in quantities from Erwinia aroideae, cell growth and enzyme formation were investigated in both batch and continuous fermentation. Using yeast extract as a growth-limiting substrate, the relationship between specific growth rate and substrate concentration was found to fit the Monod equation. The optimum temperature for enzyme production was 24 C, although cell growth was higher at 28 C. The enzyme yield reached its maximum of 4 IU/ml during the negative acceleration growth phase which occurs just prior to stationary growth. Compared to batch fermentations, the continuous fermentation process gave a lower enzyme yield except when the fermentation was conducted at a dilution rate of 0.1 hr(-1). The graphical method frequently used for prediction of continuous fermentation does not apply to L-asparaginase production by E. aroideae. The optimum temperature for enzyme production in continuous process was 24 C, which was the same as in batch process. Increasing the temperature from 24 to 28 C resulted in a 20% loss of enzyme yield.  相似文献   

6.
Mutants of an industrial-type strain of Saccharomyces cerevisiae which rapidly and completely fermented equimolar mixtures of glucose and galactose to ethanol were isolated. These mutants fell into two general phenotypic classes based upon their fermentation kinetics and enzyme induction patterns. One class apparently specifically effects the utilization of galactose and allows sequential utilization of first glucose and then galactose in an anaerobic fermentation. The second class of mutants was resistant to general catabolite repression and produced maltase, invertase, and galactokinase in the presence of repressive levels of glucose. These mutants were completely dominant and appear to represent an as yet undescribed class of mutant.  相似文献   

7.
A kinetic model for the production of ethanol by Saccharomyces cerevisiae has been developed from semiempirical analysis. The values for the parameters in this model were then determined by nonlinear multiple regression using the data of Bazua and Wilke ( 1977). The final equations were μ=0.427s(1-(p/101.6)1.95)/(0.245+s), YX/p=0.291, and YX/s=0.152(1-p/302.3). This model was then used to simulate a continuous stirred tank fermentor (CSTF) and compared to other models using the same experimental data but different kinetics. The equations required to use these kinetics in a CSTF with recycle were then developed. From this simulation, it was found that, for a CSTF with recycle, the best configuration to operate is an external recycle, with a low bleed and recycle ratio.  相似文献   

8.
谷氨酸发酵过程的神经网络模拟预测模型   总被引:5,自引:1,他引:5  
人工神经网络是八十年代迅速兴起的一门非线性科学.它力图模拟人脑的一些基本特性。如自组织性、自适应性和容错性能等,已在模式识别、数据处理和自动化控制等方面得到了初步应用,取得了很好的效果〔1〕。 本文根据上海某味精厂某发酵罐的一批批报数据,利用人工神经网络的一典型模型-“反向传播”模型,初步尝试了神经网络模拟预测方法的效果,有关这方面的研究工作尚未见报道.  相似文献   

9.
模拟青霉素分批补料发酵过程的细胞自动机模型   总被引:2,自引:0,他引:2  
根据青霉素产生菌的生长机理和青霉素分批补料发酵过程的动力学特性,在Paull等建立的形态学结构动力学模型的基础上,建立了模拟青霉素分批补料发酵过程的细胞自动机模型。模型采用三维细胞自动机作为菌体生长空间,采用Moore型邻域作为细胞邻域,其演化规则根据青霉素分批补料发酵过程中菌体生长机理和简化动力学结构模型设计。模型中的每一个细胞既可代表单个产黄青霉菌体细胞,又可代表特定数量的这种菌体细胞,它具有不同的状态。对模型进行的仿真实验结果表明:模型不但能一致地复现形态学结构动力学模型所描述的青霉素分批补料发酵过程的演化特性,而且较形态学结构动力学模型更加直观地刻画了青霉素分批补料发酵过程的演化行为。最后,对所建模型在实际生产过程中的应用问题进行了分析,指出了需要进一步研究的问题。  相似文献   

10.
The suitability of cheese whey as a substrate for vitamin B(12) production by Propionibacterium shermanii was studied. It was found that with a given level of whey solids a definite amount of yeast extract was required to give maximal yields of vitamin B(12). Of the levels of materials studied, 10% whey solids and 1.5% yeast extract gave the best yields of vitamin B(12). Most of the lactose of the whey had been utilized in all flask cultures after 168 hr at 29 C.  相似文献   

11.
Anaerobic digestion modelling is an established method for assessing anaerobic wastewater treatment for design, systems analysis, operational analysis, and control. Anaerobic treatment of domestic wastewater is a relatively new, but rapidly maturing technology, especially in developing countries, where the combination of low cost, and moderate-good performance are particularly attractive. The key emerging technology is high-rate anaerobic treatment, particularly UASB reactors. Systems modelling can potentially offer a number of advantages to this field, and the key motivations for modelling have been identified as operational analysis, technology development, and model-based design. Design is particularly important, as it determines capital cost, a key motivation for implementers. Published modelling studies for anaerobic domestic sewage treatment are limited in number, but well directed at specific issues. Most have a low structural complexity, with first order kinetics, as compared to the more commonly used Monod kinetics. This review addresses the use of anaerobic models in general, application of models to domestic sewage systems, and evaluates future requirements for models that need to address the key motivations of operational analysis, technology development, and model-based design. For operational analysis and technology development, a complex model such as the ADM1 is recommended, with further extensions as required to address factors such as sulphate reduction. For design, the critical issSues are hydraulics and particles (i.e., biomass and solid substrate) modelling. Therefore, the kinetic structure should be relatively simple (at least two-step), but the hydraulic and particulate model should be relatively complex.  相似文献   

12.
固定化细胞的混合糖连续发酵动力学模型   总被引:3,自引:0,他引:3  
利用固定化啤酒酵母和固定化毕赤酵母在两个串联的固定床内连续发酵由葡萄糖和木糖组成的混合糖制取酒精的过程,建立了连续发酵的非结构动力学模型。该模型以带抑制项的米氏动力学方程为酶动力学基础,考虑了抑制物抑制、底物抑制、轴向弥散及膜传质等因素。成功地引入了一个综合考虑颗粒相内外传质的总有效因子简化模型的计算,并取得了较为满意的仿真结果。  相似文献   

13.
Anaerobic fermentation processes for the production of a succinate-rich animal feed supplement from raw whey were investigated with batch, continuous, and variable-volume fed-batch cultures with Anaerobiospirillum succiniciproducens. The highest succinate yield, 90%, was obtained in a variable-volume fed-batch process in comparison to 80% yield in a batch cultivation mode. In continuous culture, succinate productivity was 3 g/liter/h, and the yield was 60%. Under conditions of excess CO2, more than 90% of the whey-lactose was consumed, with an end product ratio of 4 succinate to 1 acetate. Under conditions of limited CO2, lactose was only partially consumed and lactate was the major end product, with lower levels of ethanol, succinate, and acetate. When the succinic acid in this fermentation product was added to rumen fluid, it was completely consumed by a mixed rumen population and was 90% decarboxylated to propionate on a molar basis. The whey fermentation product formed under excess CO2, which contained mainly organic acids and cells, could potentially be used as an animal feed supplement.  相似文献   

14.
Admixture and recombination create populations and genomes with genetic ancestry from multiple source populations. Analyses of genetic ancestry in admixed populations are relevant for trait and disease mapping, studies of speciation, and conservation efforts. Consequently, many methods have been developed to infer genome-average ancestry and to deconvolute ancestry into continuous local ancestry blocks or tracts within individuals. Current methods for local ancestry inference perform well when admixture occurred recently or hybridization is ongoing, or when admixture occurred in the distant past such that local ancestry blocks have fixed in the admixed population. However, methods to infer local ancestry frequencies in isolated admixed populations still segregating for ancestry do not exist. In the current paper, I develop and test a continuous correlated beta process model to fill this analytical gap. The method explicitly models autocorrelations in ancestry frequencies at the population-level and uses discriminant analysis of SNP windows to take advantage of ancestry blocks within individuals. Analyses of simulated data sets show that the method is generally accurate such that ancestry frequency estimates exhibited low root-mean-square error and were highly correlated with the true values, particularly when large (±10 or ±20) SNP windows were used. Along these lines, the proposed method outperformed post hoc inference of ancestry frequencies from a traditional hidden Markov model (i.e., the linkage model in structure), particularly when admixture occurred more distantly in the past with little on-going gene flow or was followed by natural selection. The reliability and utility of the method was further assessed by analyzing genetic ancestry in an admixed human population (Uyghur) and three populations from a hybrid zone between Mus domesticus and M. musculus. Considerable variation in ancestry frequencies was detected within and among chromosomes in the Uyghur, with a large region of excess French ancestry harboring a gene with a known disease association. Similar variation was detected in the mouse hybrid zone, with notable constancy in regions of excess ancestry among admixed populations. By filling what has been an analytical gap, the proposed method should be a useful tool for many biologists. A computer program (popanc), written in C++, has been developed based on the proposed method and is available on-line at http://sourceforge.net/projects/popanc/.  相似文献   

15.
J. S. King  R. K. Mortimer 《Genetics》1991,129(2):597-602
In determining genetic map distances it is necessary to infer crossover frequencies from the ratios of recombinant and parental progeny. To do this accurately, in intervals where multiple crossovers may occur, a mathematical model of chiasma interference must be assumed when mapping in organisms displaying such interference. In Saccharomyces cerevisiae the model most frequently used is that of R.W. Barratt. An alternative to this model is presented. This new model is implemented using a microcomputer and standard numerical methods. It is demonstrated to fit ranked tetrad data from Saccharomyces more closely than the Barratt model and thus generates more accurate estimates of map distances when used with two-point data. A computer program implementing the model has been developed for use in calculating map distances from tetrad data in Saccharomyces.  相似文献   

16.
针对学生提出的问题“种群S型曲线为何在K/2时增长率最大”,通过多种渠道寻求答案,对“K/2”的实际应用提出了自己的见解。  相似文献   

17.
The intermediary carbon and electron flow routes for lactose degradation during whey biomethanation were studied in continuous culture. The chemostat was operated under lactose-limited conditions with a 100-h retention time. The carbon balance observed for lactose degradation was 4.65 mmol of CH4, 4.36 mmol of CO2 and 1.15 mmol of cellular carbon per mmol of lactose consumed, with other intermediary metabolites (i.e., acetate, lactate, etc.) accounting for less than 2% of the lactose consumed. The carbon and electron recoveries for this biomethanation were 87 and 90%, respectively. 14C tracer studies demonstrated that lactose biomethanation occurred in three distinct but simultaneous phases. Lactose was metabolized primarily into lactate, ethanol, acetate, formate, and carbon dioxide. During this hydrolytic phase, 82% of the lactose was transformed into lactate. These metabolites were transformed into acetate and H2-CO2 in a second, acetogenic, phase. Finally, the direct methane precursors were transformed during the methanogenic phase, with acetate accounting for 81% of the methane formed. A general scheme is proposed for the exact carbon and electron flow route during lactose biomethanation, which predicts the prevalent microbial populations in this ecosystem.  相似文献   

18.
Besides its properties as an antioxidant, stabilizer, or acidifier, lactobionic acid has emerged as a potential prebiotic compound, raising the possibility of being included together with the probiotic microorganism Lactobacillus casei in novel functional fermented foods with synbiotic characteristics. Their manufacturing strategy could benefit from the recently implemented microbial synthesis of lactobionic acid by the strong producer Pseudomonas taetrolens, employing residual dairy whey as raw material. The phenomenon of amensalism established between Pseudomonas and Lactobacillus makes simultaneous fermentation unfeasible. A novel sequential process has been developed in which L. casei is inoculated in a second step. Its ability to utilize lactobionic acid as a carbon and energy source was previously tested. Experimental results showed the capacity of L. casei to work efficiently on the residual substrate fermented by P. taetrolens, producing lactic acid by degrading the remaining lactose, with a lactic acid yield on substrate and productivity of 0.95 g g?1 and 0.20 g L?1 h?1, respectively. Lactobionic acid was barely consumed in this complex growth medium, thus ensuring its presence in the resulting fermented product. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1250–1256, 2017  相似文献   

19.
Whey is a protein complex derived from milk, exhibit highest protein quality rating among other proteins, being touted as a functional food with number of health benefits. In the present investigation, whey proteins hydrolysates produced using trypsin enzyme to augment antioxidant activity and to assess angiotensin converting enzyme (ACE) inhibition activity. Hydrolysis parameters were standardized applying response surface methodology. The response antioxidant activity in terms of Trolox equivalent antioxidant capacity (TEAC) values was determined by radical scavenging assay method. Optimum conditions for maximum antioxidant activity were standardized at 88 °C of preheating, 7.3 pH, 0.05 enzymes to substrate ratio and hydrolysis was carried up to 8 h at 36.5 °C. Resulting peptide fractions obtained at 11.8 % of degree of hydrolysis displayed antioxidant capacity with TEAC values of 1.37 ± 0.12. The designed model found to be significant with R2 value of 0.9972 for antioxidant activity and lack of fit test-as non significant, indicating that the optimized conditions were best suited. The hydrolysate further investigated for antihypertensive activity. The outcome indicate that to affect decrease in ACE inhibition activity 4,166.72 μg of native whey protein is required when compared to 229.96 μg of hydrolysates. These results indicate hydrolysate produced under these conditions could be an effective nutraceutical.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号