首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface sediment diatom analysis of 28 Algoma lakes (pH 4.40–8.13) indicates that even though each lake has a widely different aquatic environment and characteristic diatom assemblage, a definite relationship exists between the lake water pH and their diatom assemblages. In the acidic lakes acidobiontic and acidophilous diatom species predominate whereas in circumneutral and alkaline lakes circumneutral and alkaliphilous diatoms were most common. Cluster analysis of the pH indicator diatom assemblages grouped the study lakes into three distinct cluster groups. These groups also closely corresponded to lake water pH. On the basis of published ecological information as well as their presence in our study lakes, the pH indicator status of a number of diatom taxa have been discussed. A detailed listing of the diatom taxa identified and their pH indicator status is provided in order to facilitate their use in future diatom-inferred pH studies.  相似文献   

2.
Elena Štefková 《Biologia》2006,61(18):S101-S108
In the framework of the international project EMERGE, species composition of epilithic diatoms of 34 selected high mountain lakes of Slovak part of the Tatra Mountains were investigated. In all, 127 taxa of diatoms belonging to 26 genera were recorded. Comparison of the epilithic assemblages of the investigated lakes showed differences both in relative abundance and taxa present in the individual lakes. On the basis of species composition and relative abundance of epilithic diatoms using hierarchical cluster analysis, two main groups of lakes were created. The first group includes 4 lakes which can be classified as strongly acidified and 9 lakes which are acidified or threatened by acidification. In this group, acidophilous species such as Achnanthes helvetica, A. marginulata, Aulacoseira distans and Tabellaria flocculosa prevailed. The second group includes 19 non-acidified lakes. The most common diatoms in these lakes were Achnanthes minutissima, A. helvetica, Cymbella minuta and Denticula tenuis which occur practically in all these lakes but with different abundances. The division of lakes due to their diatom species composition mostly confirmed the status of these lakes as judged from their water chemistry.  相似文献   

3.
Diatom indicators of wetland condition were developed and tested by assessing human disturbance, water chemistry, and species composition of benthic, epiphytic, and planktonic diatoms from 20 wetlands sampled for 2 years. One sample from each site was randomly selected to form a development data set, while the rest were used as the test data set. Human disturbance indicated substantial differences among wetlands in hydrologic modification, impervious surface, and potential for non-point source contamination. These landscape alterations were related to increases in pH, non-nutrient ions, and nutrients and decreases in dissolved organic carbon and water color. Pre-existing diatom indicators, calculated with autecological information from lakes and aquatic habitats, correlated highly to relevant water chemistry and human disturbance scores. Weighted average models (WAM) of Cl, conductivity, pH, and alkalinity derived with the Maine development data set correlated to relevant water chemistry and human disturbance of the test wetlands. Diatom assemblage attributes that correlated with human disturbance were selected to combine into a multimetric index of biotic condition (IBC). IBCs and WAMs from benthic and epiphytic diatoms were usually more precisely related to relevant environmental factors than planktonic diatoms. These results showed that human disturbance alkalized wetlands, enriched them with nutrients, and diatom assemblages responded to these changes. Indicator development protocols for streams can be readily adapted for use in wetlands.  相似文献   

4.
Patil JS  Anil AC 《Biofouling》2005,21(3-4):189-206
Diatoms, which are early autotrophic colonisers, are an important constituent of the biofouling community in the marine environment. The effects of substratum and temporal variations on the fouling diatom community structure in a monsoon-influenced tropical estuary were studied. Fibreglass and glass coupons were exposed every month for a period of 4 days and the diatom population sampled at 24 h intervals, over a period of 14 months. The planktonic diatom community structure differed from the biofilm community. Pennate diatoms dominated the biofilms whilst centric diatoms were dominant in the water column. Among the biofilm diatoms, species belonging to the genera Navicula, Amphora, Nitzschia, Pleurosigma and Thalassionema were dominant. On certain occasions, the influence of planktonic blooms was also seen on the biofilm community. A comparative study of biofilms formed on the two substrata revealed significant differences in density and diversity. However species composition was almost constant. In addition to substratum variations, the biofilm diatom community structure also showed significant seasonal variations, which were attributed to physico-chemical and biological changes in both the water and substratum. Temporal variations in the tychopelagic diatoms of the water were also observed to exert an influence on the biofilm diatom community. Variations in diatom communities may determine the functional ecosystem of the benthic environment.  相似文献   

5.
The hydrology of shallow lakes (and ponds) located in the western Hudson Bay Lowlands (HBL) is sensitive to climate warming and associated permafrost thaw. However, their biological characteristics are poorly known, which hampers effective aquatic ecosystem monitoring. Located in northern Manitoba along the southwestern coast of Hudson Bay, Wapusk National Park (WNP) encompasses numerous shallow lakes representative of the subarctic zone. We analyzed the distribution and diversity of diatom (microscopic algae; class Bacillariophyceae) assemblages in surficial sediments of 33 lakes located in three different ecozones spanning a vegetation gradient, from NE to SW: the Coastal Fen (CF), the Interior Peat Plateau (IPP), and the Boreal Spruce Forest (BSF). We found significant differences (P < 0.05) in diatom community composition between CF and IPP lakes, and CF and BSF lakes, but not between IPP and BSF lakes. These results are consistent with water chemistry measurements, which indicated distinct limnological conditions for CF lakes. Diatom communities in CF lakes were generally dominated by alkaliphilous taxa typical of waters with medium to high conductivity, such as Nitzschia denticula. In contrast, several IPP and BSF lakes were dominated by acidophilous and circumneutral diatom taxa with preference for low conductivity (e.g., Tabellaria flocculosa, Eunotia mucophila, E. necompacta var. vixcompacta). This exploratory survey provides a first detailed inventory of the diatom assemblages in the WNP region needed for monitoring programs to detect changes in shallow lake ecosystems and ecozonal shifts in response to climate variations.  相似文献   

6.
The mountain ranges in NW Spain have a large number of little known wetlands. We report the results of a study carried out on a group of 77 small lakes and mires in the Sierra Segundera and Cordillera Cantábrica. The main physical and chemical variables, and phytoplankton communities from littoral samples were studied. Cantabrian wetlands showed greater variability in all environmental variables measured as well as higher values in those related to mineralisation than the Segundera ones. Many of these ecosystems were oligotrophic and showed a high species richness. Desmids and diatoms were the two most abundant groups, both in the species number and in biovolume. Desmids were the most numerous group in taxa in Sierra Segundera, whereas diatoms were in Cordillera Cantábrica. Differences in species composition of algae communities between both mountain ecosystems were studied. Canonical Correspondence Analysis (CCA) was carried out on diatom and desmid flora composition. This analysis showed that alkalinity was the most important parameter in diatom distribution and pH the most important one in that of desmids.  相似文献   

7.
The Late-glacial and Postglacial sediments of the former Komo?any Lake in North-West Bohemia were studied by means of diatom analysis to trace the pattern of past environmental change in the lake. Several phases of lake development could be distinguished. Originally the Komo?any Lake was a eutrophic shallow water basin. The diatom succession in the early Postglacial sediment indicates alternating alkaliphilic, epiphytic and planktonic diatom communities associated with changes in water level in the basin. At the beginning of the Subatlantic period the water level began to rise and the development of planktonic diatoms, typical of small eutrophic lakes, occurred. Later, the basin became shallow again and the number of indifferent and acidophilous diatoms increased. This is typical for the final phase of the infilling process of a lake before its transformation to peatland  相似文献   

8.
Jagadish S. Patil 《Biofouling》2013,29(3-4):189-206
Abstract

Diatoms, which are early autotrophic colonisers, are an important constituent of the biofouling community in the marine environment. The effects of substratum and temporal variations on the fouling diatom community structure in a monsoon-influenced tropical estuary were studied. Fibreglass and glass coupons were exposed every month for a period of 4 days and the diatom population sampled at 24 h intervals, over a period of 14 months. The planktonic diatom community structure differed from the biofilm community. Pennate diatoms dominated the biofilms whilst centric diatoms were dominant in the water column. Among the biofilm diatoms, species belonging to the genera Navicula, Amphora, Nitzschia, Pleurosigma and Thalassionema were dominant. On certain occasions, the influence of planktonic blooms was also seen on the biofilm community. A comparative study of biofilms formed on the two substrata revealed significant differences in density and diversity. However species composition was almost constant. In addition to substratum variations, the biofilm diatom community structure also showed significant seasonal variations, which were attributed to physico-chemical and biological changes in both the water and substratum. Temporal variations in the tychopelagic diatoms of the water were also observed to exert an influence on the biofilm diatom community. Variations in diatom communities may determine the functional ecosystem of the benthic environment.  相似文献   

9.
The objective of this study was to examine the influences of the adjacent river and surrounding landuse on wetland diatom distributional patterns. Diatoms were identified in surface sediment samples from 35 riverine-impounded wetlands within the Willamette Valley, OR. A total of 221 species were identified and no single species dominated the assemblage at all sites. Diatom richness was high throughout the area (median 71, range 66–75). The Araphidineae:Centrales index, a measure of periphytic to planktonic species ratio, was lowest at sites within the river's annual floodplain zone. A low A:C index is to be expected at wetlands that receive inputs of river planktonic species through regular flooding by adjacent large rivers. Surrounding landuse can confound the influence of riverine flooding on wetland diatom assemblages by influencing water quality. Relative abundance of the two most common species, Aulacoseira crenulata and Fragilaria capusina related negatively to % agricultural landuse surrounding the wetland. These results indicate that riverine wetland diatom assemblages may be influenced by flooding from adjacent rivers and surrounding landuse and therefore wetland sediment diatoms might serve as useful indicators of both historical environmental changes in nearby large rivers and surrounding watersheds.  相似文献   

10.
Surface sediment diatoms from 30 Sudbury lakes were analyzed to establish a relationship between diatoms and limnological characteristics of these lakes. Factor analysis of various chemical and physical variables suggested that most of the variance was associated with the pH, pH-metal, and conductivity factors. Factor analysis of common diatom taxa indicated that the distribution of most of these diatoms is closely related to lake water pH and/or pH related factors. Regression analysis of various pH indicator assemblages with measured lake water pH also demonstrated significant relationships. Among the transfer functions employed to compute diatom-inferred pH, multiple regressions using pH indicator assemblages proved to be the best. Using this method an accuracy of about 0.3 pH unit can be achieved, even for lakes which have received large trace metal inputs concurrent with increase in acidity. The presence of planktonic diatoms in acidic lakes suggests that the widely accepted hypothesis that planktonic diatoms are greatly reduced in waters at pH below 5.6 is not always true.  相似文献   

11.
The extraction of bitumen from the Athabasca oil sands is rapidly expanding, and emission of sulphur and nitrogen oxides has substantially increased. To determine whether lakes downwind of this development in northwest Saskatchewan have been detrimentally impacted since development of the oil sands, a paleolimnological assessment of ten lakes was carried out. Analysis of diatom valves and inferences of diatom-inferred pH indicated that emissions have not resulted in widespread chronic acidification of acid-sensitive lakes ~80–250 km east and northeast of the oil sands development around Fort McMurray and Fort Mackay. However, one of the closest sites to the development indicated a slight decline in diatom-inferred pH, but the two next closest sites, both of which had higher alkalinity, did not show any evidence of acidification. There were also no consistent trends in the concentration or flux of total or individual priority pollutants including lead, mercury, copper, zinc and vanadium. The sedimentation rates in most lakes increased since the mid-1900s, along with increased flux of both diatoms and scaled chrysophytes. Subtle changes in the species assemblages of diatoms and increased flux of diatoms and chrysophyte scales are consistent with recent climate change in this region.  相似文献   

12.
1. Lakes and ponds in the Larsemann Hills and Bølingen Islands (East‐Antarctica) were characterised by cyanobacteria‐dominated, benthic microbial mats. A 56‐lake dataset representing the limnological diversity among the more than 150 lakes and ponds in the region was developed to identify and quantify the abiotic conditions associated with cyanobacterial and diatom communities. 2. Limnological diversity in the lakes of the Larsemann Hills and Bølingen Islands was associated primarily with conductivity and conductivity‐related variables (concentrations of major ions and alkalinity), and variation in lake morphometry (depth, catchment and lake area). Low concentrations of pigments, phosphate, nitrogen, DOC and TOC in the water column of most lakes suggest extremely low water column productivity and hence high water clarity, and may thus contribute to the ecological success of benthic microbial mats in this region. 3. Benthic communities consisted of prostrate and sometimes finely laminated mats, flake mats, epilithic and interstitial microbial mats. Mat physiognomy and carotenoid/chlorophyll ratios were strongly related to lake depth, but not to conductivity. 4. Morphological‐taxonomic analyses revealed the presence of 26 diatom morphospecies and 33 cyanobacterial morphotypes. Mats of shallow lakes (interstitial and flake mats) and those of deeper lakes (prostrate mats) were characterised by different dominant cyanobacterial morphotypes. No relationship was found between the distribution of these morphotypes and conductivity. In contrast, variation in diatom species composition was strongly related to both lake depth and conductivity. Shallow ponds were mainly characterised by aerial diatoms (e.g. Diadesmis cf. perpusilla and Hantzschia spp.). In deep lakes, communities were dominated by Psammothidium abundans and Stauroforma inermis. Lakes with conductivities higher than ±1.5 mS cm?1 became susceptible to freezing out of salts and hence pronounced conductivity fluctuations. In these lakes P. abundans and S. inermis were replaced by Amphora veneta. Stomatocysts were important only in shallow freshwater lakes. 5. Ice cover influenced microbial mat structure and composition both directly by physical disturbance in shallow lakes and by influencing light availability in deeper lakes, as well as indirectly by generating conductivity increases and promoting the development of seasonal anoxia. 6. The relationships between diatom species composition and conductivity, and diatom species composition and depth, were statistically significant. Transfer functions based on these data can therefore be used in paleolimnological reconstruction to infer changes in the precipitation–evaporation balance in continental Antarctic lakes.  相似文献   

13.
To determine longitudinal changes in phytoplankton composition and biomass in the Warnow River (Germany), single water parcels were followed during their downstream transport in August and October 1996 and April 1997. In summer, the phytoplankton assemblage was dominated by centric diatom and cyanobacteria species. Stephanodiscus hantzschii, Pseudanabaena limnetica, Planktothrix agardhii and Aulacoseira granulata var. angustissima were the most frequent species. In autumn, small centric diatoms dominated the whole river course. Irrespective of the season, in the fluvial lakes of the upper river, a substantial increase of phytoplankton biomass was observed. Shallow upstream river stretches were associated with large biomass losses. In the deep, slow flowing lower regions, total biomass remained constant. Longitudinal changes in biomass reflected downstream variations in flow velocity and river morphology. Cyanobacteria, cryptophytes and diatom species were subjected to large biomass losses along fast flowing, shallow river sections, whereas chlorophytes were favoured. Diatoms and cryptophytes benefited from low flow velocity and increased water depth in the downstream river. Changes in water depth and flow velocity have been found as key factors that cause the longitudinal differences in phytoplankton composition and biomass in small rivers.  相似文献   

14.
1. We examined whether the anthropogenic degradation of wetlands leads to homogenization of the biota at local and/or landscape scales and, if so, what specific factors account for such an effect. We compared 16 isolated wetlands (Michigan, U.S.A.) that varied in surrounding land use: half had developed, and half undeveloped, riparian zones. Samples of macrophytes, epiphytic diatoms, zooplankton, macroinvertebrates and water chemistry were collected along three transects in each wetland. 2. Developed wetlands were more nutrient‐rich with higher Cl concentrations. The plant community at developed sites was dominated by Lemnaceae (duckweed), while undeveloped wetlands were dominated by rooted, floating‐leaved vegetation and sensitive plant species. Undeveloped wetlands contained heterogeneous and species‐rich plant communities, greater species richness of zooplankton and diatoms, and heterogeneous zooplankton distributions as compared to developed sites. 3. A comparison among wetlands showed that diatom and zooplankton assemblages in developed wetlands were nested subsets of richer biota found in less developed wetlands. Conversely, plant communities were more heterogeneously distributed among developed wetlands at the landscape level. This may be attributable to patchy invasions by exotic species, which were a feature of the degraded wetlands within developed landscapes. 4. Our results indicate that several taxonomic groups showed similar, probably inter‐dependent, responses to wetland degradation and habitat homogenization at both the local and landscape scales. This change in community structure from a species‐rich and heterogeneous community dominated by floating‐leaved plants in undeveloped wetlands, to nutrient‐rich wetlands dominated by duckweed may represent a shift to an alternate stable state.  相似文献   

15.
Abundance and composition of microplankton were studied overa period of 2 years at two depths in Villefranche Bay (LigurianSea, NW Mediterranean Sea). Diatoms dominated the microplanktonin late spring and autumn, whereas dinoflagellates composedthe major part of the microplankton in summer. The silicoflagellateDictyocha fibula and the diatom Thalassionema frauenfeldii dominatedin winter. Ciliates showed low variability throughout the yearwith the lowest abundance in February and an increase whichcoincided with the diatom maxima during autumn in both years.In 1998, the spring bloom (in May) was mainly composed of dinoflagellatesnear the surface and of diatoms in deeper layers. Subsurfacediatom maxima were observed in August–September and November.In 1999, diatoms peaked in May both at the surface and at thedepth of 50 m. They showed a strong maximum in October. Dinoflagellatesand tintinnids showed maxima in early November. Comparisonswith previous studies reveal that (i) changes in species compositionhave not been significant, (ii) the silicoflagellate’sabundance is lower during the present study, (iii) the sequentialspring bloom is composed of a pico-nanoplankton bloom in Marchand microphytoplankton in May, whereas in other western Mediterraneanareas the spring microphytoplankton bloom is reported in Februaryand March, (iv) high water transport through the Corsica channelcoinciding with low or negative winter values of North AtlanticOscillation (NAO) index are associated with the anomalous strongdevelopment of the spring diatom blooms in the Bay of Villefranche,whereas the usual trend is the lack of or weak development ofthe spring diatom bloom. This feature may determine the natureand the fate of primary production and the interannual variabilityin the relative importance of the microbial food web versusthe microbial loop.  相似文献   

16.
Wang P  Shen H  Xie P 《Microbial ecology》2012,63(2):369-382
Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining results from field observations and laboratory experiments. The field investigation showed that spring diatom blooms (Cyclotella meneghiniana and Stephanodiscus hantzschii) occurred in Lake Taihu and Hanjiang River with similar environmental factors such as water temperature, pH, and dissolved oxygen in 2008. Concentrations of total phosphorus (TP), total nitrogen, and ammonia nitrogen (NH4-N) in Lake Taihu were significantly higher than the concentrations in the Hanjiang River. Laboratory experiments were conducted to evaluate growth and physiological responses of four lotic diatoms (Cyclotella atomus, Fragilaria crotonensis, Nitzschia palea, and S. hantzschii, isolated from the Hanjiang River) and three lentic diatoms (C. meneghiniana, Melosira varians, and Stephanodiscus minutulus, isolated from Lake Taihu, Lake Donghu, and Guanqiao Pond, respectively) to various P concentrations under small-scale turbulent and standing conditions. Our results showed that, with turbulence, lotic diatoms C. atomus, F. crotonensis, N. palea, and S. hantzschii demonstrated a significant increase in affinity for P compared with lentic diatoms C. meneghiniana, M. varians, and S. minutulus. Moreover, lotic diatoms C. atomus, F. crotonensis, and N. palea had higher growth rates and photosynthetic efficiencies with small-scale turbulence than with standing conditions both in P-limited and P-replete conditions. Lotic species S. hantzschii and three lentic diatoms (C. meneghiniana, M. varians, and S. minutulus) grew well under standing conditions. Our results may explain our field observation that the occurrence of diatom blooms in lakes is often associated with higher TP concentrations whereas in rivers, diatom blooms occur at a wide range of TP concentrations under flows. Therefore, different hydrodynamics and nutrient concentrations determined the dominant diatom species, according to their habitat-dependent physiological characteristics.  相似文献   

17.
Diatom communities of acidic mountain streams in Poland   总被引:1,自引:0,他引:1  
Kwandrans  Janina 《Hydrobiologia》1993,269(1):335-342
A comparison has been made of the species composition of diatom communities developing in acidic Polish mountain streams which flow over calcium-poor substrates: sandstones in the Silesian Beskid (section of the Western Carpathians), the witokrzyskie Mts, and over granite in the Karkonosze range (in the Sudetic Mts). The number of taxa and diversity of the diatom assemblages decreased along a decreasing pH gradient. The correlation between pH and the number of taxa was positive and significant (r 2 = 0.69, p < 0.005). A small number of species (< 20) and low diversity were found in the communities developing in strongly acidic streams such as in the witokrzyskie Mts with pH 4.1–5.2, and in the Silesian Beskid with pH 3.5–4.0. In the stream of the Karkonosze Mts, with pH 5.2–6.0, the communities were characterized by their greater number of species and higher diversity.Acidobiontic and acidophilous diatoms were generally dominant. The pH-indiferent forms were less abundant, and their proportion increased above pH 5.0. Eunotia exigua, E. paludosa var. trinacria, E. tenella and Pinnularia subcapitata dominated in streams with the lowest pH, while E. exigua, E. sudetica and Achnanthes kryophila predominated in a stream with water pH above 5.2. Eunotia exigua, a common acidobiontic species was present in all the examined communities, and was a strong dominant in waters of pH 5.0. A corresponding decrease in abundance of E. exigua was observed with an increase in pH.  相似文献   

18.
Owen  R.B.  Renaut  R.W.  Hover  V.C.  Ashley  G.M.  Muasya  A.M. 《Hydrobiologia》2004,518(1-3):59-78
Lakes Bogoria and Baringo lie in a semi-arid part of the Kenya Rift Valley between 0° 15′–0° 30'N and 36° 02′–36° 05′E. Nevertheless, the area around these lakes contains numerous wetland systems that have been formed: along lake shorelines; along faults where hot, warm and cold springs have developed; and along river systems that cross the rift floor. Six major types of wetland are recognized: Proximal Hot Springs; Hot Spring Marshes; Blister Wetlands; Typha and Cyperus papyrus Swamps; Floodplain Marshes; Hypersaline Lake Littoral Wetlands; and Freshwater Lake Littoral Wetlands. These show significant variability in terms of geomorphic setting, water chemistry, temperature, plant communities and diatom floras. They are variously dominated by macrophytes, such as Cyperus laevigatus, Typha domingensis and Cyperus papyrus. In some cases macrophytes are absent. In hot spring settings and in hypersaline lake littoral zones bacterial mats are common. Although absent in some samples, diatoms occur in at least parts of all of the wetlands, varying in diversity, abundance and species composition. Canonical correspondence analysis indicates that diatom floras show a close relationship with pH, temperature, and specific conductivity, with other environmental variables such as Si and nitrate being of secondary importance. Common diatoms include: Anomoeoneis sphaerophora var. guntheri, Navicula tenella, N. cuspidata, and Nitzschia invisitata in hot springs, where diversity is generally low and abundance is variable. Other wetland types contain distinctive diatom floras that variously include: Fragilaria brevistriata, Gomphonema parvulum, Navicula tenelloides, Nitzschia communis, N. latens, N. sigma, Rhopalodia gibberula, and Stauroneis anceps.  相似文献   

19.
In Lake Suigetsu, central Japan, greenish/light‐brown granules identified as cytoplasmic masses had been preserved in siliceous cell walls of freshwater diatoms in annual layers of lacustrine muds since the early Holocene. The lacustrine muds consisted of alternating dark‐colored (rich in diatom valves, clay, and organic matter) and light‐colored (mainly diatom valves) laminae. The greenish/light‐brown granules were predominately preserved in frustules of the genus Aulacoseira preserved in the dark‐colored laminae. The dark‐colored laminae were inferred to have formed annually under stratified water caused by surface water warming in summer that caused the formation of an organic‐rich anoxic layer on the lake bottom that favored granule preservation. The good preservation of cytoplasmic masses in dark‐colored laminae suggested a cause for diatom assemblage periodicity, a phenomenon that was commonly noted in temperate lakes: the cells containing these masses could be potential seed stocks for subsequent spring blooms. Frustules of the most abundant granule‐containing species, Aulacoseira nipponica (Skvortzow) Tuji, in the dark‐colored laminae of the Early Holocene muds were abundant in the overlying light‐colored laminae, suggesting that these species reproduced abundantly in springtime yielding a massive diatom bloom.  相似文献   

20.
The objective of this study was to examine the influences of the adjacent river and surrounding landuse on wetland diatom distributional patterns. Diatoms were identified in surface sediment samples from 35 riverine‐impounded wetlands within the Willamette Valley, OR. A total of 221 species were identified and no single species dominated the assemblage at all sites. Diatom richness was high throughout the area (median 71, range 66–75). The Araphidineae:Centrales index, a measure of periphytic to planktonic species ratio, was lowest at sites within the river's annual floodplain zone. A low A:C index is to be expected at wetlands that receive inputs of river planktonic species through regular flooding by adjacent large rivers. Surrounding landuse can confound the influence of riverine flooding on wetland diatom assemblages by influencing water quality. Relative abundance of the two most common species, Aulacoseira crenulata and Fragilaria capusina related negatively to % agricultural landuse surrounding the wetland. These results indicate that riverine wetland diatom assemblages may be influenced by flooding from adjacent rivers and surrounding landuse and therefore wetland sediment diatoms might serve as useful indicators of both historical environmental changes in nearby large rivers and surrounding watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号