首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell Tr2 is a neuron in the subesophageal ganglion of the leech that can trigger swim episodes. In this report, we describe the ability of Tr2 to terminate ongoing swim episodes as well as to trigger swimming. Stimulation of Tr2 terminated ongoing swim episodes in nearly every preparation tested, while Tr2 stimulation triggered swim episodes in only a minority of the preparations. We suggest that the primary role of Tr2 is in the termination rather than the initiation of swimming activity.The swim trigger neuron Tr3 and a swim-gating neuron, cell 21, hyperpolarized during Tr2-induced swim termination. Another swim-gating neuron, cell 204 was sometimes slightly excited, but more often, hyperpolarized during Tr2-induced swim termination. In contrast to these cells, Tr2 stimulation excited another swim-gating neuron, cell 61. The responses of the swimgating cells were variable in amplitude and sometimes not evident during Tr2-induced swim termination. Hence, the effects of Tr2 stimulation on swim-gating neurons seem unlikely to be the direct cause of swim termination.Oscillator cells examined during Tr2-induced swim termination include: 27, 28, 33, 60, 115, and 208. The largest effect seen in an oscillator neuron was in cell 208, which was repolarized by up to 10 mV during Tr2 stimulation. Tr2 stimulation did not produce any obvious synaptic effects in motor neurons DI-1, VI-1, and DE-3. Our findings indicate that other, yet undiscovered, connections are likely to be important in Tr2-induced swim termination. Therefore, we propose that cell Tr2 is probably a member of a distributed neural network involved in swim termination.Abbreviations DP dorsal posterior nerve - Mx midbody ganglion x - Rx neuromere x of the subsesophageal (rostral) ganglion - DE dorsal excitatory motor neuron - DI dorsal inhibitory motor neuron - VI ventral inhibitory motor neuron  相似文献   

2.
Antagonists were used to investigate the role of the excitatory amino acid,l-glutamate, in the swim motor program ofHirudo medicinalis. In previous experiments, focal application ofl-glutamate or its non-NMDA agonists onto either the segmental swim-gating interneuron (cell 204) or the serotonergic Retzius cell resulted in prolonged excitation of the two cells and often in fictive swimming. Since brief stimulation of the subesophageal trigger interneuron (cell Tr1) evoked a similar response, we investigated the role of glutamate at these synapses. Kynurenic acid and two non-NMDA antagonists, 6,7-dinitroquinoxaline-2,3-dione (DNQX) and Joro spider toxin, effectively suppressed (1) the sustained activation of cell 204 and the Retzius cell following cell Tr1 stimulation and (2) the monosynaptic connection from cell Tr1 to cell 204 and the Retzius cell, but did not block spontaneous or DP nerve-activated swimming. Other glutamate blockers, including -d-glutamylaminomethyl sulfonic acid,l(+)-2-amino-3-phosphonoproprionic acid and 2-amino-5-phosphonopentanoic acid, were ineffective. DNQX also blocked both indirect excitation of cell 204 and direct depolarization of cell Tr1 in response to mechanosensory P cell stimulation. Our findings show the involvement of non-NMDA receptors in activating the swim motor program at two levels: (1) P cell input to cell Tr1 and (2) cell Tr1 input to cell 204, and reveal an essential role for glutamate in swim initiation via the cell Tr1 pathway.  相似文献   

3.
Voluntary movements in animals are often episodic, with abrupt onset and termination. Elevated neuronal excitation is required to drive the neuronal circuits underlying such movements; however, the mechanisms that sustain this increased excitation are largely unknown. In the medicinal leech, an identified cascade of excitation has been traced from mechanosensory neurons to the swim oscillator circuit. Although this cascade explains the initiation of excitatory drive (and hence swim initiation), it cannot account for the prolonged excitation (10–100 s) that underlies swim episodes. We present results of physiological and theoretical investigations into the mechanisms that maintain swimming activity in the leech. Although intrasegmental mechanisms can prolong stimulus-evoked excitation for more than one second, maintained excitation and sustained swimming activity requires chains of several ganglia. Experimental and modeling studies suggest that mutually excitatory intersegmental interactions can drive bouts of swimming activity in leeches. Our model neuronal circuits, which incorporated mutually excitatory neurons whose activity was limited by impulse adaptation, also replicated the following major experimental findings: (1) swimming can be initiated and terminated by a single neuron, (2) swim duration decreases with experimental reduction in nerve cord length, and (3) swim duration decreases as the interval between swim episodes is reduced.  相似文献   

4.
The aim of this study was to identify neurons in the subesophageal ganglion of the medicinal leech which initiate swimming activity and to determine their output connections. We found two bilaterally symmetrical pairs of interneurons, Tr1 and Tr2, located in the first division of the subesophageal ganglion which initiate swimming activity in the isolated nervous system when depolarized with brief (1-3 s) current pulses. Tr1 and Tr2 are considered trigger neurons because elicited swimming episodes outlast the stimulus duration, and because the length of elicited swim episodes is nearly independent of the intensity with which Tr1 and Tr2 are stimulated. Tr1 and Tr2 have similar morphologies. The neurites of both cells cross contralaterally in the subesophageal ganglion, project posteriorly, and exit the subesophageal ganglion in the contralateral connective. The axons of Tr1 and Tr2 extend as far posterior as segmental ganglion 18 of the ventral nerve cord. Tr1 provides direct excitatory drive to three groups of segmental neurons which are capable of initiating swimming: swim-initiating interneurons (cells 204 and 205), serotonin-containing interneurons (cells 61 and 21), and the serotonergic Retzius cells. In addition, all Retzius cells in the subesophageal ganglion are excited directly by Tr1. These three groups of neurons are excited even if Tr1 stimulation is subthreshold for swim initiation. In contrast to Tr1, Tr2 stimulation evokes transient inhibition in swim-initiating and serotonin-containing interneurons, and has little immediate effect on Retzius cells. In addition, Tr2 indirectly inhibits several oscillator neurons, including cells 208, 33, and 60. When Tr1 is stimulated during a swimming episode the swim period decreases for several cycles, while stimulation of Tr2 during swimming episodes reliably resets the ongoing swimming rhythm. Our findings indicate that Tr1 and Tr2 are trigger neurons which initiate swimming activity by different pathways. These neurons also have functional interactions with the swim oscillator network since either Tr1 or Tr2 stimulation during swimming can modulate the ongoing swimming rhythm.  相似文献   

5.
In papers I and II of this series, we described two pairs of interneurons, Tr1 and Tr2, in the leech subesophageal ganglion which can trigger swimming activity in the isolated central nervous system (CNS). In this paper, we describe sensory inputs to these trigger neurons from previously identified mechanosensory neurons. We found that: Weak mechanical stimulation (stroking) of a body wall flap attached to a segmental ganglion in an otherwise isolated CNS excites the contralateral Tr1 slightly. Strong mechanical stimulation (pinching) of a mid-body wall flap evokes a burst of impulses in the contralateral Tr1. For both means of stimulation the effects on the ipsilateral Tr1 and on the Tr2 cell pair were much weaker. Stroking a body wall flap attached to the head ganglion (supra- and subesophageal ganglia) in an otherwise isolated CNS excites both Tr1s and both Tr2s, although the effect is weaker for the Tr2s. Pinching strongly excites both trigger neurons bilaterally. Pressure and nociceptive mechanosensory neurons (P and N cells) in the subesophageal ganglion and the first segmental ganglion appear to make direct excitatory synapses with the contralateral Tr1 and Tr2. Mechanosensory interactions with the ipsilateral trigger neurons appear to be indirect. Functional inactivation of Tr1 by hyperpolarization does not prevent swim initiation either by weak mechanical stimulation of a body-wall flap or by intracellular stimulation of P cells.2+ We conclude that the trigger neurons, Tr1 and Tr2, provide an excitatory pathway by which mechanosensory stimulation can initiate leech swimming activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A radular mechanosensory neuron, RM, was identified in the buccal ganglia of Incilaria fruhstorferi. Fine neurites ramified bilaterally in the buccal ganglia, and main neurites entered the subradular epithelium via buccal nerve 3 (n3). When the radula was distorted by bending, RM produced an afferent spike which was preceded by an axonic spike recorded at n3. The response of RM to radular distortion was observed even in the absence of Ca2+, which drastically suppressed chemical synaptic interactions. Therefore, RM was concluded to be a primary radular mechanoreceptor.During rhythmic buccal motor activity induced by food or electrical stimulation of the cerebrobuccal connective, RM received excitatory input during the radular retraction phase. In the isolated buccal ganglia connected to the radula via n3s, the afferent spike, which had been evoked by electrical stimulation of the subradular epithelium, was broadened with the phasic excitatory input. Since the afferent spike was also broadened by current injection into the soma, depolarization due to the phasic input may have produced the spike broadening.Spike broadening was also observed during repetitive firing evoked by current injection. The amplitude of the excitatory postsynaptic potential in a follower neuron increased depending on the spike broadening of RM.Abbreviations CBC cerebrobuccal connective - EPSP excitatory postsynaptic potential - n1,n3 buccal nerves 1 and 3 - RBMA rhythmic buccal motor activity - RM radular mechanosensory neuron - SMT supramedian radular tensor neuron  相似文献   

7.
Although feeding in Aplysia is mediated by a central pattern generator (CPG), the activity of this CPG is modified by afferent input. To determine how afferent activity produces the widespread changes in motor programs that are necessary if behavior is to be modified, we have studied two classes of feeding sensory neurons. We have shown that afferent-induced changes in activity are widespread because sensory neurons make a number of synaptic connections. For example, sensory neurons make monosynaptic excitatory connections with feeding motor neurons. Sensori-motor transmission is, however, regulated so that changes in the periphery do not disrupt ongoing activity. This results from the fact that sensory neurons are also electrically coupled to feeding interneurons. During motor programs sensory neurons are, therefore, rhythmically depolarized via central input. These changes in membrane potential profoundly affect sensori-motor transmission. For example, changes in membrane potential alter spike propagation in sensory neurons so that spikes are only actively transmitted to particular output regions when it is behaviorally appropriate. To summarize, afferent activity alters motor output because sensory neurons make direct contact with motor neurons. Sensori-motor transmission is, however, centrally regulated so that changes in the periphery alter motor programs in a phase-dependent manner.  相似文献   

8.
Comparisons of the nervous systems of closely related invertebratespecies show that identified neurons tend to be highly conservedeven though the behaviors in which they participate vary. Allopisthobranch molluscs examined have a similar set of serotonin-immunoreactiveneurons located medially in the cerebral ganglion. In a smallnumber of species, these neurons have been physiologically andmorphologically identified. In the nudibranch, Tritonia diomedea,three of the neurons (the dorsal swim interneurons, DSIs) havebeen shown to be members of the central pattern generator (CPG)underlying dorsal/ventral swimming. The DSIs act as intrinsicneuromodulators, altering cellular and synaptic properties withinthe swim CPG circuit. Putative homologues of the DSIs have beenidentified in a number of other opisthobranchs. In the notaspid,Pleurobranchaea californica, the apparent DSI homologues (As1–3)play a similar role in the escape swim and they also have widespreadactions on other systems such as feeding and ciliary locomotion.In the gymnosomatid, Clione limacina, the presumed homologousneurons (Cr-SP) are not part of the swimming pattern generator,which is located in the pedal ganglia, but act as extrinsicmodulators, responding to noxious stimuli and increasing thefrequency of the swim motor program. Putative homologous neuronsare also present in non-swimming species such as the anaspid,Aplysia californica, where at least one of the cerebral serotonergicneurons, CC3 (CB-1), evokes neuromodulatory actions in responseto noxious stimuli. Thus, the CPG circuit in Tritonia appearsto have evolved from the interconnections of neurons that arecommon to other opisthobranchs where they participate in arousalto noxious stimuli but are not rhythmically active.  相似文献   

9.
Summary This paper describes newly identified excitatory connections linking the segmentally iterated swim-initiator interneurons with the network of oscillator neurons that generates the leech swimming rhythm. Apparently monosynaptic excitatory chemical connections are made from one class of swim-initiator neurons (cells 204/205) to several members of the swim oscillator network, including cells 28, 115 and, as described by Weeks (1982c), cell 208. A second class of swim-initiator neurons, cells 21 and 61, also excites this subset of the oscillator neurons.The unpaired swim oscillator neuron, cell 208, also chemically excites cells 28 and 115, apparently directly. Thus, in addition to its role as a member of the swim oscillator, the excitatory output from cell 208 to the swim oscillator adds to that provided by the swim-initiator neurons.The results of this paper enlarge the subset of identified swim oscillator neurons synaptically excited by the swim-initiator neurons. These newly described targets of the swim-initiators strengthen the hypotheses that: 1) the swim-initiator neurons supply much of the tonic excitatory drive responsible for activation and maintenance of the swim central motor program, and 2) the two classes of swim-initiators, cells 204/205 and cells 21/61, act synergistically to initiate and maintain swimming.Abbreviations EPSP excitatory postsynaptic potential - IPSP inhibitory postsynaptic potential - CNS central nervous system  相似文献   

10.
In the developing nervous system, ordered neuronal activity patterns can occur even in the absence of sensory input and to investigate how these arise, we have used the model system of the embryonic chicken spinal motor circuit, focusing on motor neurons of the lateral motor column (LMC). At the earliest stages of their molecular differentiation, we can detect differences between medial and lateral LMC neurons in terms of expression of neurotransmitter receptor subunits, including CHRNA5, CHRNA7, GRIN2A, GRIK1, HTR1A and HTR1B, as well as the KCC2 transporter. Using patch-clamp recordings we also demonstrate that medial and lateral LMC motor neurons have subtly different activity patterns that reflect the differential expression of neurotransmitter receptor subunits. Using a combination of patch-clamp recordings in single neurons and calcium-imaging of motor neuron populations, we demonstrate that inhibition of nicotinic, muscarinic or GABA-ergic activity, has profound effects of motor circuit activity during the initial stages of neuromuscular junction formation. Finally, by analysing the activity of large populations of motor neurons at different developmental stages, we show that the asynchronous, disordered neuronal activity that occurs at early stages of circuit formation develops into organised, synchronous activity evident at the stage of LMC neuron muscle innervation. In light of the considerable diversity of neurotransmitter receptor expression, activity patterns in the LMC are surprisingly similar between neuronal types, however the emergence of patterned activity, in conjunction with the differential expression of transmitter systems likely leads to the development of near-mature patterns of locomotor activity by perinatal ages.  相似文献   

11.
The adult nervous system is characterized by partial or complete morphological segregation of terminals from different afferent neurons innervating the same postsynaptic target. This segregation is thought to result, in part, from competition between the afferent terminals. To explore the role of the target cell in the spatial distribution of presynaptic inputs, the sensory neurons of Aplysia were cultured either with or without a common target motor neuron. In the presence of a common target, the outgrowth from two different sensory neurons tends to occupy separate postsynaptic regions. When cultured without a target motor neuron, processes from different sensory neurons do not segregate, but rather grow freely along one another. Thus, morphological segregation of sensory outgrowth requires interaction with a target neuron and may reflect competition between presynaptic terminals for a limited number of synaptic sites on the motor neuron, or for a postsynaptic trophic factor.  相似文献   

12.
Cobalt axonal iontophoresis and intracellular recordings were used to identify a cluster of several motor neurons innervating the penis-retractor muscle of Aplysia. Intracellularly recorded motor neuron action potentials elicited direct, one-for-one, constant latency excitatory junctional potentials (ejps) in individual muscle fibers. The axons of motor neurons could be recorded extracellularly in the penis-retractor nerve and stimulation of the nerve backfired the motor neurons. Perfusion of the ganglion, the muscle, or both with solutions of either increased Mg++/decreased Ca++ or increased Ca++ sea water indicated that the presumed motor neuron impaled was not a sensory cell and that interneurons were not intercalated in the pathway. Innervation of muscle fibers was found to be functionally polyneuronal and diffuse. The ejps were found to undergo marked facilitation with repetitive motor-neuron stimulation. The motor neurons were isolated in a distinct cluster in the right pedal ganglion. Their electrical activity was characterized by spontaneous irregular action potentials and a moderate input of postsynaptic potentials.  相似文献   

13.
We investigated the synaptic inputs from the serially homologous pleural, tympanal and wing-hinge chordotonal organs onto a set of identified homologous interneurons (714, 539, 529) in the ventral nerve cord of the grasshopper Schistocerca gregaria. Cobalt backfills show that afferents from all chordotonal organs project into stereotypic tracts in the central nervous system in which intracellular staining reveals the interneurons to have dendritic arborizations. Neuron 714 was found to receive excitatory bilateral synaptic input from all the serial chordotonal organs tested, from the second thoracic segment down to the seventh abdominal segment. Neuron 531, by contrast, only receives input from the chordotonal afferents on the first abdominal segment; those on the axon side are excitatory, while those on the soma side are inhibitory. The pattern of chordotonal input onto neuron 529 is similar to that seen for neuron 714, with the exception that neuron 529 receives no input from the forewing chordotonal organs. The pattern of afferent connectivities onto neurons 714, 531 and 529 differs with respect to those afferents which synapse directly or indirectly with the respective neuron. The synaptic inputs demonstrate a segmental specialization in the chordotonal system and thereby offer an insight into information processing in a modular sensory system.  相似文献   

14.
Poo C  Isaacson JS 《Neuron》2011,72(1):41-48
In primary sensory cortices, there are two main sources of excitation: afferent sensory input relayed from the periphery and recurrent intracortical input. Untangling the functional roles of these two excitatory pathways is fundamental for understanding how cortical neurons process sensory stimuli. Odor representations in the primary olfactory (piriform) cortex depend on excitatory sensory afferents from the olfactory bulb. However, piriform cortex pyramidal cells also receive dense intracortical excitatory connections, and the relative contribution of these two pathways to odor responses is unclear. Using a combination of in vivo whole-cell voltage-clamp recording and selective synaptic silencing, we show that the recruitment of intracortical input, rather than olfactory bulb input, largely determines the strength of odor-evoked excitatory synaptic transmission in rat piriform cortical neurons. Furthermore, we find that intracortical synapses dominate odor-evoked excitatory transmission in broadly tuned neurons, whereas bulbar synapses dominate excitatory synaptic responses in more narrowly tuned neurons.  相似文献   

15.
Neurophysiological genetics is the study of the mechanisms bywhich genes control nervous function and behavior. The transductionof genetic information into neural information is studied atthe level of the neuron through genetic and physiological techniques. The neurons responsible for the leg-shaking action specificto a single-gene mutant of Drosophila melanogaster, Hk1, havebeen located in three pairs of small regions in the thoracicganglion. The activity pattern of these neurons is coded bythe mutant Hk1 gene. The center for the specifically patternedleg-shaking action is composed of several motor neurons whoseactivity is governed by the pacemaking activity of at leastone interneuron. As it is most likely that the mutant gene isexpressed autonomously in this interneuron, there is a possibilityof investigating ways in which genes may influence the propertiesof neurons. The activity of the mutant neuron was monitoredintracellularly, and the pattern formation mechanism was studied.The amplitude, duration, and periodicity of the pacemaker potentialand the spike initiation site determine the activity patternresulting in the specific leg-shaking action.  相似文献   

16.
Transcranial magnetic stimulation (TMS) noninvasively interferes with human cortical function, and is widely used as an effective technique for probing causal links between neural activity and cognitive function. However, the physiological mechanisms underlying TMS-induced effects on neural activity remain unclear. We examined the mechanism by which TMS disrupts neural activity in a local circuit in early visual cortex using a computational model consisting of conductance-based spiking neurons with excitatory and inhibitory synaptic connections. We found that single-pulse TMS suppressed spiking activity in a local circuit model, disrupting the population response. Spike suppression was observed when TMS was applied to the local circuit within a limited time window after the local circuit received sensory afferent input, as observed in experiments investigating suppression of visual perception with TMS targeting early visual cortex. Quantitative analyses revealed that the magnitude of suppression was significantly larger for synaptically-connected neurons than for isolated individual neurons, suggesting that intracortical inhibitory synaptic coupling also plays an important role in TMS-induced suppression. A conventional local circuit model of early visual cortex explained only the early period of visual suppression observed in experiments. However, models either involving strong recurrent excitatory synaptic connections or sustained excitatory input were able to reproduce the late period of visual suppression. These results suggest that TMS targeting early visual cortex disrupts functionally distinct neural signals, possibly corresponding to feedforward and recurrent information processing, by imposing inhibitory effects through intracortical inhibitory synaptic connections.  相似文献   

17.
The nudibranch Melibe leonina swims by rhythmically bending from side to side at a frequency of 1 cycle every 2-4 s. The objective of this study was to locate putative swim motoneurons (pSMNs) that drive these lateral flexions and determine if swimming in this species is produced by a swim central pattern generator (sCPG). In the first set of experiments, intracellular recordings were obtained from pSMNs in semi-intact, swimming animals. About 10-14 pSMNs were identified on the dorsal surface of each pedal ganglion and 4-7 on the ventral side. In general, the pSMNs in a given pedal ganglion fired synchronously and caused the animal to flex in that direction, whereas the pSMNs in the opposite pedal ganglion fired in anti-phase. When swimming stopped, so did rhythmic pSMN bursting; when swimming commenced, pSMNs resumed bursting. In the second series of experiments, intracellular recordings were obtained from pSMNs in isolated brains that spontaneously expressed the swim motor program. The pattern of activity recorded from pSMNs in isolated brains was very similar to the bursting pattern obtained from the same pSMNs in semi-intact animals, indicating that the sCPG can produce the swim rhythm in the absence of sensory feedback. Exposing the brain to light or cutting the pedal-pedal connectives inhibited fictive swimming in the isolated brain. The pSMNs do not appear to participate in the sCPG. Rather, they received rhythmic excitatory and inhibitory synaptic input from interneurons that probably comprise the sCPG circuit.  相似文献   

18.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.  相似文献   

19.
In mammals, somatosensory input activates feedback and feed-forward inhibitory circuits within the spinal cord dorsal horn to modulate sensory processing and thereby affecting sensory perception by the brain. Conventionally, feedback and feed-forward inhibitory activity evoked by somatosensory input to the dorsal horn is believed to be driven by glutamate, the principle excitatory neurotransmitter in primary afferent fibers. Substance P (SP), the prototypic neuropeptide released from primary afferent fibers to the dorsal horn, is regarded as a pain substance in the mammalian somatosensory system due to its action on nociceptive projection neurons. Here we report that endogenous SP drives a novel form of feed-forward inhibitory activity in the dorsal horn. The SP-driven feed-forward inhibitory activity is long-lasting and has a temporal phase distinct from glutamate-driven feed-forward inhibitory activity. Compromising SP-driven feed-forward inhibitory activity results in behavioral sensitization. Our findings reveal a fundamental role of SP in recruiting inhibitory activity for sensory processing, which may have important therapeutic implications in treating pathological pain conditions using SP receptors as targets.  相似文献   

20.
Spontaneous and evoked synaptic activity of command neurons for the defensive response of spiracle closing were studied by simultaneous intracellular recording of activity of several identified CNS neurons in snails. Comparison of monosynaptic EPSPs in command neurons evoked by discharges of presynaptic neurons with spontaneous synaptic potentials indicated that the central organization of the defensive reflex is in the form of a two-layered neuron net in which each neuron of the afferent layer possesses a local receptive field, but which overlaps with other afferent neurons. Each neuron of the afferent layer is connected with each neuron of the efferent layer by monosynaptic excitatory connections that differ in efficiency (maximal only with one neuron of the efferent layer). Both receptive fields of neurons of the afferent layer and "fields of efficiency of synaptic connections" are distributed according to the normal law. As a result of this organization the neuron net acquires a new quality: The action of different stimuli leads to the appearance of differently located "spatial excitation profiles" of efferent layer neurons even when this action of the stimulus occurs not at the center of the receptive field.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 26–34, January-February, 1984.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号