首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The human papillomavirus type 16 (HPV16) E5 protein associates with the epidermal growth factor receptor (EGFR) and enhances the activation of the EGFR after stimulation by EGF in human keratinocytes. Phosphatidylinositol 3-kinase (PI3K) and ERK1/2 mitogen-activated protein kinase (ERK1/2 MAPK), two signal molecules downstream of the EGFR, have been recognized as participants in two survival signal pathways in response to stress. The fact that E5 can enhance EGFR activation suggests that E5 might act as a survival factor. To test this hypothesis, the apoptotic response of UV B-irradiated primary keratinocytes infected with either control retrovirus, LXSN, or HPV16 2E5-expressing recombinant retrovirus was quantitated. Under the same conditions, LXSN-infected cells showed extensive apoptosis, while E5-expressing cells demonstrated a significant reduction in UV B-irradiation-induced apoptosis. The E5-mediated protection against apoptosis was blocked by wortmannin and PD98059, specific inhibitors of the PI3K and ERK1/2 MAPK pathways, respectively, suggesting that the PI3K and ERK1/2 MAPK pathways are involved in this process. Western blot analysis showed that Akt (also named protein kinase B), which is a downstream effector of PI3K, and ERK1/2 MAPK were activated by EGF. When cells were stimulated by EGF and irradiated by UV B, the levels of phospho-Akt and phospho-ERK1/2 activated by EGF in E5-expressing cells were about twofold greater than those in LXSN-infected cells. Two other UV-activated stress pathways, p38 and JNK, were activated to the same level during UV B irradiation in both LXSN-infected cells and E5-expressing cells, indicating that E5 protein did not affect these two pathways. After UV B irradiation, p53 was activated in both LXSN-infected cells and E5-expressing cells, and cell cycle analysis showed that nearly all cells in both cell populations were growth arrested. These data suggest that unlike HPV16 E6, which blocks apoptosis by inactivation of p53, HPV16 E5 protects cells from apoptosis by enhancing the PI3K-Akt and ERK1/2 MAPK signal pathways.  相似文献   

3.
The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on cell cycle progression, gene expression, prevention of apoptosis and sensitivity to chemotherapeutic drugs were examined in FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf-1 and Akt-1 activation by treatment with testosterone or tamoxifen respectively. In these cells we can compare the effects of normal cytokine vs. oncogene mediated signaling in the same cells by changing the culture conditions. Raf-1 was more effective than Akt-1 in inducing cell cycle progression and preventing apoptosis in the presence and absence of chemotherapeutic drugs. The normal cytokine for these cells, interleukin-3 induced/activated most downstream genes transiently, with the exception of p70S6K that was induced for prolonged periods of time. In contrast, most of the downstream genes induced by either the activate Raf-1 or Akt-1 oncogenes were induced for prolonged periods of time, documenting the differences between cytokine and oncogene mediated gene induction which has important therapeutic consequences. The FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells were sensitive to MEK and PI3K/mTOR inhibitors. Combining MEK and PI3K/mTOR inhibitors increased the induction of apoptosis. The effects of doxorubicin on the induction of apoptosis could be enhanced with MEK, PI3K and mTOR inhibitors. Targeting the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways may be an effective approach for therapeutic intervention in those cancers which have upstream mutations which result in activation of these pathways.  相似文献   

4.
Hypertonicity is a stressful stimulus leading to cell shrinkage and apoptotic cell death. Apoptosis can be prevented if cells are able to activate the mechanism of RVI (regulatory volume increase). This study in mIMCD3 cells presents evidence of a permissive role of the EGFR (epidermal growth factor receptor) on RVI, achieved for the most part through the two main EGFR-triggered signalling chains, the MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) and the PI3K (phosphoinositide 3-kinase)/Akt (also known as protein kinase B) pathways. Hyperosmotic solutions (450 mosM) made by addition of NaCl, increased EGFR phosphorylation, which is prevented by GM6001 and AG1478, blockers respectively, of MMPs (matrix metalloproteinases) and EGFR. Inhibition of EGFR, ERK (PD98059) or PI3K/Akt (wortmannin) phosphorylation reduced RVI by 60, 48 and 58% respectively. The NHE (Na(+)/H(+) exchanger) seems to be the essential mediator of this effect since (i) NHE is the main contributor to RVI, (ii) EGFR, ERK and PI3K/Akt blockers added together with the NHE blocker zoniporide reduce RVI by non-additive effects and (iii) All the blockers significantly lowered the NHE rate in cells challenged by an NH(4)Cl pulse. Besides reducing RVI, the inhibition of MMP, EGFR and PI3K/Akt had a strong pro-apoptotic effect increasing cell death by 2-3.7-fold. This effect was significantly lower when RVI inhibition did not involve the EGFR-PI3K/Akt pathway. These results provide evidence that Akt and its permissive effect on RVI have a predominant influence on cell survival under hypertonic conditions in IMCD3 cells. This role of Akt operates under the influence of EGFR activation, promoted by MMP.  相似文献   

5.
Hepatocyte growth factor (HGF) promotes the proliferation of adult myoblasts and inhibits their differentiation, whereas insulin-like growth factor I (IGF-I) enhances both processes. Recent studies indicate that activation of the phosphoinositide 3'-kinase (PI3K) pathway promotes myoblast differentiation, whereas activation of the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) promotes proliferation and inhibits their differentiation. This simple model is confounded by the fact that both HGF and IGF-I have been shown to activate both pathways. In this study, we have compared the ability of HGF and IGF-I to activate PI3K and MAPK/ERK in i28 myogenic cells. We find that, although the two stimuli result in comparable recruitment of the p85alpha subunit of PI3K into complexes with tyrosine-phosphorylated proteins, the p85beta regulatory subunit and p110alpha catalytic subunit of PI3K are preferentially recruited into these complexes in response to IGF-I. In agreement with this observation, IGF-I is much more potent than HGF in stimulating phosphorylation of Akt/PKB, a protein kinase downstream of PI3K. In contrast, MAPK/ERK phosphorylation was higher in response to HGF and lasted longer, relative to IGF-I. Moreover, the specific PI3K inhibitor, Wortmannin, abolished MAPK/ERK and Elk-1 phosphorylation in HGF-treated cells, suggesting the requirement of PI3K in mediating the HGF-induced MAPK pathway. UO126, a specific MAPK pathway inhibitor, had no effect on PI3K activity or Akt phosphorylation, implying that at least in muscle cells, the MAPK/ERK pathway is not required for HGF-induced PI3K activation. These results provide a biochemical rationale for the previous observations that HGF and IGF-I have opposite effects on myogenic cells, consistent with studies linking PI3K activation to differentiation and MAPK/ERK activation to proliferation in these cells. Moreover, the finding that PI3K activity is required for HGF-induced MAPK activation suggests its additional role in proliferation, rather than exclusively in the differentiation of adult myoblasts.  相似文献   

6.
The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on cell cycle progression, gene expression, prevention of apoptosis and sensitivity to chemotherapeutic drugs were examined in FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf-1 and Akt-1 activation by treatment with testosterone or tamoxifen respectively. In these cells we can compare the effects of normal cytokine vs. oncogene mediated signaling in the same cells by changing the culture conditions. Raf-1 was more effective than Akt-1 in inducing cell cycle progression and preventing apoptosis in the presence and absence of chemotherapeutic drugs. The normal cytokine for these cells, interleukin-3 induced/activated most downstream genes transiently, with the exception of p70S6K that was induced for prolonged periods of time. In contrast, most of the downstream genes induced by either the activate Raf-1 or Akt-1 oncogenes were induced for prolonged periods of time, documenting the differences between cytokine and oncogene mediated gene induction which has important therapeutic consequences. The FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells were sensitive to MEK and PI3K/mTOR inhibitors. Combining MEK and PI3K/mTOR inhibitors increased the induction of apoptosis. The effects of doxorubicin on the induction of apoptosis could be enhanced with MEK, PI3K and mTOR inhibitors. Targeting the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways may be an effective approach for therapeutic intervention in those cancers which have upstream mutations which result in activation of these pathways.  相似文献   

7.
The biological effects of epidermal growth factor receptor (EGFR) activation may differ between epidermal suprabasal and basal keratinocytes, since growth factors are mitogenic in adherent cells only in the presence of cell-extracellular matrix (ECM) interaction. To investigate biological effects of EGFR activation on keratinocytes without cell-ECM interaction, we cultured normal human keratinocytes on polyhydroxyethylmethacrylate-coated plates, which disrupt cell-ECM but not cell-cell interaction. The cells initially expressed keratin 10 (K10) and then profilaggrin, mimicking sequential differentiation of epidermal suprabasal keratinocytes. The addition of EGF or transforming growth factor-alpha promoted late terminal differentiation (profilaggrin expression, type 1 transglutaminase expression and activity, and cornified envelope formation) of the suspended keratinocytes, while suppressing K10 expression, an early differentiation marker. These effects were attenuated by EGFR tyrosine kinase inhibitor PD153035 or an anti-EGFR monoclonal antibody, whereas protein kinase C inhibitors H7 and bisindolylmaleimide I or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD98059 abolished profilaggrin up-regulation but not K10 suppression. Since the antidifferentiative role of EGFR on cell-ECM interaction-conserved keratinocytes has been well documented, our results indicate that the biological effects of EGFR on keratinocytes are influenced by cell-ECM interaction and suggest that EGFR activation promotes rather than inhibits the terminal differentiation of suprabasal epidermal keratinocytes.  相似文献   

8.
9.
Cartilage development is initiated by the differentiation of mesenchymal cells into chondrocytes. Differentiated chondrocytes in articular cartilage undergo dedifferentiation and apoptosis during arthritis, in which NO production plays a critical role. Here, we investigated the roles and mechanisms of action of insulin-like growth factor-1 (IGF-1) in the chondrogenesis of mesenchymal cells and the maintenance and survival of differentiated articular chondrocytes. IGF-1 induced chondrogenesis of limb bud mesenchymal cells during micromass culture through the activation of phosphatidylinositol 3-kinase (PI3K) and Akt. PI3K activation is required for the activation of protein kinase C (PKC)-alpha and p38 kinase and inhibition of ERK1/2. These events are necessary for chondrogenesis. The growth factor additionally blocked NO-induced dedifferentiation and apoptosis of primary culture articular chondrocytes. NO production in chondrocytes induced down-regulation of PI3K and Akt activities, which was blocked by IGF-1 treatment. Stimulation of PI3K by IGF-1 resulted in blockage of NO-induced activation of p38 kinase and ERK1/2 and inhibition of PKCalpha and PKCzeta, which in turn suppressed dedifferentiation and apoptosis. Our results collectively indicate that IGF-1 regulates differentiation, maintenance of the differentiated phenotype, and apoptosis of articular chondrocytes via a PI3K pathway that modulates ERK, p38 kinase, and PKC signaling.  相似文献   

10.
The Ras/Raf/extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway is known to cross-talk with other signaling pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt pathway. However, the role of PI3K in ERK-1/2 activation induced by tyrosine kinase receptors was not fully understood. Here, we report that two structurally distinct PI3K inhibitors, wortmannin and LY294002, inhibited insulin-induced activation of ERK1/2 but had no effect on EGF-induced activation of ERK1/2 in hepatocellular carcinoma BEL-7402 and SMMC-7721 cells, breast cancer MCF-7 cells, and prostate cancer LNCaP cells. Although protein kinase C could act as a mediator between PI3K and ERK1/2, protein kinase C inhibitor chelerythrine chloride did not inhibit insulin-induced ERK1/2 activation. Both insulin- and EGF-induced ERK1/2 activation are strictly dependent on Ras activation, however, wortmannin only inhibited insulin-induced, but not EGF-induced Ras activation. These results indicate that PI3K plays different roles in the activation of Ras/ERK1/2 signaling by insulin and EGF, and that insulin-stimulated, but not EGF-stimulated, ERK1/2 and Akt signalings diverge at PI3K.  相似文献   

11.
12.
13.
Nicotine treatment triggers calcium influx into neuronal cells, which promotes cell survival in a number of neuronal cells. Phosphoinositide (PI) 3-kinase and downstream PI3-kinase target Akt have been reported to be important in the calcium-mediated promotion of survival in a wide variety of cells. We investigated the mechanisms of nicotine-induced phosphorylation of Akt in PC12h cells, in comparison with nicotine-induced ERK phosphorylation. Nicotine induced Akt phosphorylation in a dose-dependent manner. A nicotinic acetylcholine receptor (nAChR) alpha7 subunit-selective inhibitor had no significant effect on nicotine-induced Akt phosphorylation, while a non-selective nAChR antagonist inhibited the phosphorylation. L-type voltage-sensitive calcium channel (VSCC) antagonists, calmodulin antagonist, and Ca2+/calmudulin-dependent protein kinase (CaM kinase) inhibitor prevented the nicotine-induced Akt phosphorylation. Three epidermal growth factor receptor (EGFR) inhibitors prevented the nicotine-induced phosphorylation of both extracellular signal-regulated protein kinase (p42/44 MAP kinase, ERK) and Akt. In contrast, an inhibitor of the Src family tyrosine kinase prevented the nicotine-induced Akt phosphorylation but not ERK phosphorylation. These results suggested that nicotine induces the activation of both PI3-kinase/Akt and ERK pathways via common pathways including non-alpha7-nAChRs, L-type VSCC, CaM kinase II and EGFR in PC12h cells, but Src family tyrosine kinases only participate in the pathway to activate Akt.  相似文献   

14.
The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on proliferation, drug resistance, prevention of apoptosis and sensitivity to signal transduction inhibitors were examined in FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf and Akt activation. Drug resistant cells were isolated from FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells in the presence of doxorubicin. Activation of Raf-1, in the drug resistant FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells, increased the IC50 for doxorubicin 80-fold, whereas activation of Akt-1, by itself, had no effect on the doxorubicin IC50. However, Akt-1 activation enhanced cell proliferation and clonogenicity in the presence of chemotherapeutic drugs. Thus the Raf/MEK/ERK pathway had profound effects on the sensitivity to chemotherapeutic drugs, and Akt-1 activation was required for the long-term growth of these cells as well as resistance to chemotherapeutic drugs. The effects of doxorubicin on the induction of apoptosis in the drug resistant cells were enhanced by addition of either mTOR and MEK inhibitors. These results indicate that targeting the Raf/MEK/ERK and PI3K/Akt/mTOR pathways may be an effective approach for therapeutic intervention in drug resistant cancers that have mutations activating these cascades.  相似文献   

15.
Sphingosine 1-phosphate (S1P) has been shown to regulate expression of several genes in vascular smooth muscle cells (VSMCs) and contributes to arteriosclerosis. However, the mechanisms regulating epidermal growth factor receptor (EGFR) expression by S1P in aortic VSMCs remain unclear. Western blotting and RT-PCR analyses showed that S1P induced EGFR mRNA and protein expression in a time- and concentration-dependent manner, which was attenuated by inhibitors of MEK1/2 (U0126) and phosphatidylinositide 3-kinase (PI3K; wortmannin), and transfection with dominant negative mutants of ERK and Akt, respectively. These results suggested that S1P-induced EGFR expression was mediated through p42/p44 MAPK and PI3K/Akt pathways in VSMCs. In accordance with these findings, S1P stimulated phosphorylation of p42/p44 MAPK and Akt which was attenuated by U0126 and wortmannin, respectively. Furthermore, S1P-induced EGFR upregulation was blocked by a selective NF-kappaB inhibitor helenalin. Immunofluorescent staining and reporter gene assay revealed that S1P-induced activation of NF-kappaB was blocked by wortmannin, but not by U0126, suggesting that activation of NF-kappaB was mediated through PI3K/Akt. Moreover, S1P-induced EGFR expression was inhibited by an AP-1 inhibitor curcumin and tanshinone IIA. S1P-stimulated AP-1 subunits (c-Jun and c-Fos mRNA) expression was attenuated by U0126 and wortmannin, suggesting that MEK and PI3K/ERK cascade linking to AP-1 was involved in EGFR expression. Upregulation of EGFR by S1P may exert a phenotype modulation of VSMCs. This hypothesis was supported by pretreatment with AG1478 or transfection with shRNA of EGFR that attenuated EGF-stimulated proliferation of VSMCs pretreated with S1P, determined by XTT assay. These results demonstrated that in VSMCs, activation of Akt/NF-kappaB and ERK/AP-1 pathways independently regulated S1P-induced EGFR expression in VSMCs. Understanding the mechanisms involved in S1P-induced EGFR expression on VSMCs may provide potential therapeutic targets in the treatment of arteriosclerosis.  相似文献   

16.
We previously reported that the 3,5,3'-triiodo-L-thyronine (T3)-induced increase of Na-K-ATPase activity in rat alveolar epithelial cells (AECs) required activation of Src kinase, PI3K, and MAPK/ERK1/2. In the present study, we assessed the role of Akt in Na-K-ATPase activity and the interaction between the PI3K and MAPK in response to T3 by using MP48 cells, inhibitors, and constitutively active mutants in the MP48 (alveolar type II-like) cell line. The Akt inhibitor VIII blocked T3-induced increases in Na-K-ATPase activity and amount of plasma membrane Na-K-ATPase protein. The Akt inhibitor VIII also abolished the increase in Na-K-ATPase activity induced by constitutively active mutants of either Src kinase or PI3K. Moreover, constitutively active mutants of Akt increased Na-K-ATPase activity in the absence of T3. Thus activation of Akt was required for T3-induced Na-K-ATPase activity in AECs and is sufficient in the absence of T3. Inhibitors of Src kinase (PP1), PI3K (wortmannin), and ERK1/2 (U0126) all blocked the T3-induced Na-K-ATPase activity. PP1 blocked the activation of PI3K and also ERK1/2 by T3, whereas U0126 did not prevent T3 activation of Src kinase or PI3K activity. Wortmannin did not significantly alter T3-increased MAPK/ERK1/2 activity, suggesting that T3-activated PI3K/Akt and MAPK/ERK1/2 pathways acted downstream of the Src kinase. Furthermore, in the absence of T3, a constitutively active mutant of Src kinase increased activities of Na-K-ATPase, PI3K, and MAPK/ERK1/2. A constitutively active mutant of PI3K enhanced Na-K-ATPase activity but did not alter the MAPK/ERK1/2 activity significantly. In summary, in adult rat AECs T3-stimulated Src kinase activity can activate both PI3K/Akt and MAPK/ERK1/2, and activation of Akt is necessary for T3-induced Na-K-ATPase activity.  相似文献   

17.
Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus and cell type specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction of COX-2 expression. This study aims to elucidate the role of intracellular signaling pathways in Zn2+-induced COX-2 expression in human bronchial epithelial cells. Inhibitors of the phosphatidylinositol 3-kinase (PI3K) potently block Zn2+-induced COX-2 mRNA and protein expression. Overexpression of adenoviral constructs encoding dominant-negative Akt kinase downstream of PI3K or wild-type phosphatase and tensin homolog deleted on chromosome 10, an important PI3K phosphatase, suppresses COX-2 mRNA expression induced by Zn2+. Zn2+ exposure induces phosphorylation of the tyrosine kinases, including Src and EGF receptor (EGFR), and the p38 mitogen-activated protein kinase. Blockage of these kinases results in inhibition of Zn2+-induced Akt phosphorylation as well as COX-2 protein expression. Overexpression of dominant negative p38 constructs suppresses Zn2+-induced increase in COX-2 promoter activity. In contrast, the c-Jun NH2-terminal kinase and the extracellular signal-regulated kinases have minimal effect on Akt phosphorylation and COX-2 expression. Inhibition of p38, Src, and EGFR kinases with pharmacological inhibitors markedly reduces Akt phosphorylation induced by Zn2+. However, the PI3K inhibitors do not show inhibitory effects on p38, Src, and EGFR. These data suggest that p38 and EGFR kinase-mediated Akt activation is required for Zn2+-induced COX-2 expression and that the PI3K/Akt signaling pathway plays a central role in this event.  相似文献   

18.
Phosphoinositide 3-kinase (PI3K) and Akt play important roles in platelet activation. However, the downstream mechanisms mediating their functions are unclear. We have recently shown that nitric-oxide (NO) synthase 3 and cGMP-dependent protein kinase stimulate platelet secretion and aggregation. Here we show that PI3K-mediated Akt activation plays an important role in agonist-stimulated platelet NO synthesis and cGMP elevation. Agonist-induced elevation of NO and cGMP was inhibited by Akt inhibitors and reduced in Akt-1 knock-out platelets. Akt-1 knock-out or Akt inhibitor-treated platelets showed reduced platelet secretion and aggregation in response to low concentrations of agonists, which can be reversed by low concentrations of 8-bromo-cGMP or sodium nitroprusside (an NO donor). Similarly, PI3K inhibitors diminished elevation of cGMP and inhibited platelet secretion and the second wave platelet aggregation, which was also partially reversed by 8-bromo-cGMP. These results indicate that the NO-cGMP pathway is an important downstream mechanism mediating PI3K and Akt signals leading to platelet secretion and aggregation. Conversely, the PI3K-Akt pathway is the major upstream mechanism responsible for activating the NO-cGMP pathway in platelets. Thus, this study delineates a novel platelet activation pathway involving sequential activation of PI3K, Akt, nitric-oxide synthase 3, sGC, and cGMP-dependent protein kinase.  相似文献   

19.
The normal human breast epithelial cell line, MCF10A, was used to investigate the mechanism by which high-density inhibits EGF-dependent cell cycle progression. EGF-dependent Akt activation was found to be transient in high-density cells and sustained in low-density cells. High-density cells also showed decreased EGF receptor (EGFR) autophosphorylation, decreased retinoblastoma protein phosphorylation, and increased p27 protein expression. Although EGFR activation was decreased in the high-density cells, the activation was sufficient to stimulate EGFR substrates comparable to low-density cells. EGF-dependent activation of the Erk1/2 pathway and the upstream activators of Akt (Gab1, erbB3, PI3 kinase, and PDK1) showed no density dependency. Antagonists of Akt activity provided further evidence that regulation of Akt activation is the critical signal transduction step controlling EGF-dependent cell cycle progression. Both adenovirus-mediated expression of dominant-negative Akt and inhibition of PI3 kinase-mediated Akt activation with LY294002 blocked cell cycle progression of low-density cells. In summary, we report the novel finding that high-density blocks EGF-dependent cell cycle progression by inhibiting EGF signaling at the level of EGF-dependent Akt activation rather than at the level of EGFR activation.  相似文献   

20.
We have shown previously that human intestinal epithelial cell survival and anoikis are distinctively regulated according to the state of differentiation. Here we analyzed the roles of protein kinase B/Akt isoforms in such differentiation state distinctions. Anoikis was induced in undifferentiated and differentiated enterocytes by inhibition of focal adhesion kinase (Fak; pharmacologic inhibition or overexpression of dominant-negative mutants) or beta1 integrins (antibody blocking) or by maintaining cells in suspension. Expression/activation parameters of Akt isoforms (Akt-1, Akt-2, and Akt-3) and Fak were analyzed. Activity of Akt isoforms was also blocked by inhibition of phosphatidylinositol 3-kinase or by overexpression of dominant-negative mutants. Here we report the following. 1) The expression/activation levels of Akt-1 increase overall during enterocytic differentiation, and those of Akt-2 decrease, whereas Akt-3 is not expressed. 2) Akt-1 activation is dependent on beta1 integrins/Fak signaling, regardless of the differentiation state. 3) Akt-2 activation is dependent on beta1 integrins/Fak signaling in undifferentiated cells only. 4) Activation of Akt-1 is phosphatidylinositol 3-kinase-dependent, whereas that of Akt-2 is not. 5) Akt-2 does not promote survival or apoptosis/anoikis. 6) Akt-1 is essential for survival. 7) Akt-2 cannot substitute for Akt-1 in the suppression of anoikis. Hence, the expression and regulation of Akt isoforms show differentiation state-specific distinctions that ultimately reflect upon their selective implication in the mediation of human intestinal epithelial cell survival. These data provide new insights into the synchronized regulation of cell survival/death that is required in the dynamic renewal process of tissues such as the intestinal epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号