首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homologous desensitization of D(1) dopamine receptors is thought to occur through their phosphorylation leading to arrestin association which interdicts G protein coupling. In order to identify the relevant domains of receptor phosphorylation, and to determine how this leads to arrestin association, we created a series of mutated D(1) receptor constructs. In one mutant, all of the serine/threonine residues within the 3rd cytoplasmic domain were altered (3rdTOT). A second construct was created in which only three of these serines (serines 256, 258, and 259) were mutated (3rd234). We also created four truncation mutants of the carboxyl terminus (T347, T369, T394, and T404). All of these constructs were comparable with the wild-type receptor with respect to expression and adenylyl cyclase activation. In contrast, both of the 3rd loop mutants exhibited attenuated agonist-induced receptor phosphorylation that was correlated with an impaired desensitization response. Sequential truncation of the carboxyl terminus of the receptor resulted in a sequential loss of agonist-induced phosphorylation. No phosphorylation was observed with the most severely truncated T347 mutant. Surprisingly, all of the truncated receptors exhibited normal desensitization. The ability of the receptor constructs to promote arrestin association was evaluated using arrestin-green fluorescent protein translocation assays and confocal fluorescence microscopy. The 3rd234 mutant receptor was impaired in its ability to induce arrrestin translocation, whereas the T347 mutant was comparable with wild type. Our data suggest a model in which arrestin directly associates with the activated 3rd cytoplasmic domain in an agonist-dependent fashion; however, under basal conditions, this is sterically prevented by the carboxyl terminus of the receptor. Receptor activation promotes the sequential phosphorylation of residues, first within the carboxyl terminus and then the 3rd cytoplasmic loop, thereby dissociating these domains and allowing arrestin to bind to the activated 3rd loop. Thus, the role of receptor phosphorylation is to allow access of arrestin to its receptor binding domain rather than to create an arrestin binding site per se.  相似文献   

2.
Chronic activation of the mu-opioid receptor (MOR1TAG) results in the loss of agonist response that has been attributed to desensitization and down-regulation of the receptor. It has been suggested that opioid receptor phosphorylation is the mechanism by which this desensitization and down-regulation occurs. When MOR1TAG was stably expressed in both neuroblastoma neuro2A and human embryonic kidney HEK293 cells, the opioid agonist [D-Ala2,MePhe4, Gly5-ol]enkephalin (DAMGO) induced a time- and concentration-dependent phosphorylation of the receptor, in both cell lines, that could be reversed by the antagonist naloxone. Protein kinase C can phosphorylate the receptor, but is not involved in DAMGO-induced MOR1TAG phosphorylation. The rapid rate of receptor phosphorylation, occurring within minutes, did not correlate with the rate of the loss of agonist-mediated inhibition of adenylyl cyclase, which occurs in hours. This lack of correlation between receptor phosphorylation and the loss of response was further demonstrated when receptor phosphorylation was increased by either calyculin A or overexpression of the G-protein receptor kinases. Calyculin A increased the magnitude of MOR1TAG phosphorylation without altering the DAMGO-induced loss of the adenylyl cyclase response. Similarly, when mu- and delta-opioid (DOR1TAG) receptors were expressed in the same system, overexpression of beta-adrenergic receptor kinase 2 elevated agonist-induced phosphorylation for both receptors. However, in the same cell lines under the same conditions, overexpression of beta-adrenergic receptor kinase 2 and beta-arrestin 2 accelerated the rate of DPDPE- but not DAMGO-induced receptor desensitization. Thus, these data show that phosphorylation of MOR1TAG is not an obligatory event for the DAMGO-induced loss in the adenylyl cyclase regulation by the receptor.  相似文献   

3.
The mu opioid receptor (MOR) has been shown to desensitize after 1 h of exposure to the opioid peptide, [D-Ala(2), N-MePhe(4), Gly-ol(5)]enkephalin (DAMGO), largely by the loss of receptors from the cell surface and receptor down-regulation. We have previously shown that the Thr(394) in the carboxyl tail is essential for agonist-induced early desensitization, presumably by serving as a primary phosphorylation site for G protein-coupled receptor kinase. Using a T394A mutant receptor, we determined that Thr(394) was also responsible for mu opioid receptor down-regulation. The T394A mutant receptor displayed 50% reduction of receptor down-regulation (14.8%) compared with wild type receptor (34%) upon 1 h of exposure to DAMGO. Agonist-induced T394A receptor down-regulation was unaffected by pertussis toxin treatment, indicating involvement of a mechanism independent of G protein function. Interestingly, pertussis toxin-insensitive T394A receptor down-regulation was completely inhibited by a tyrosine kinase inhibitor, genistein. Tyrosine kinase inhibition blocked wild type MOR down-regulation by 50%, and the genistein-resistant wild type MOR down-regulation was completely pertussis toxin-sensitive. Following DAMGO stimulation, MOR was shown to be phosphorylated at tyrosine residue(s), indicating that the receptor was a direct substrate for tyrosine kinase action. Mutagenesis of the four intracellular tyrosine residues resulted in complete inhibition of the G protein-insensitive MOR internalization. Therefore, agonist-induced MOR down-regulation appears to be mediated by two distinct cellular signal transduction pathways. One is G protein-dependent and GRK-dependent, which can be abolished by pertussis toxin treatment of wild type MOR or by mutagenesis of Thr(394). The other novel pathway is G protein-independent but tyrosine kinase-dependent, blocked by genistein treatment, and one in which Thr(394) has no regulatory role but phosphorylation of tyrosine residues appears essential.  相似文献   

4.
Mitselos A  Peeters TL  Depoortere I 《Peptides》2008,29(7):1167-1175
The motilin receptor (MTLR) is an important therapeutic target for the treatment of hypomotility disorders but desensitization may limit its clinical utility. The aim of this study was to investigate the role of the C-terminal tail of the MTLR in the desensitization, phosphorylation and internalization process. Three MTLR mutants, C-terminally truncated from amino acid 412 till 384 (MTLRDelta385), 374 (MTLRDelta375) or 368 (MTLRDelta369), were constructed and C-terminally tagged with an EGFP and stably expressed in CHO cells co-expressing the Ca(2+) indicator apoaequorin. Activity and desensitization were studied by measuring changes in motilin-induced luminescent Ca(2+) rises. Receptor phosphorylation was investigated by immunoprecipitation and MTLR-EGFP internalization was visualized by fluorescence microscopy. Truncation only reduced MTLR affinity and the efficacy to induce Ca(2+) luminescent responses of the MTLRDelta375-EGFP mutant. Furthermore, the region between amino acid 375 and 368 seems to be important for proper cell surface expression of the MTLR since receptors of the MTLRDelta369-EGFP mutant but not of the other mutants were found intracellularly in vesicles. Truncation of the receptor till amino acid 384 or 374 did neither affect desensitization nor internalization. In contrast phosphorylation of the MTLRDelta385-EGFP mutant was reduced by 80% but was not affected in the MTLRDelta375-EGFP mutant. In conclusion, MTLR desensitization and internalization is not dependent on the presence of the C-terminal tail. Truncation favors internalization via either phosphorylation-independent pathways or via phosphorylation of alternative sites in the receptor.  相似文献   

5.
Substance P receptor (SPR) and its naturally occurring splice-variant, lacking the C-terminal tail, are found in brain and spinal cord. Whether C-terminally truncated SPR desensitizes like full-length SPR is controversial. We used a multivaried approach to determine whether human SPR (hSPR) and a C-terminally truncated mutant, hSPRDelta325, differ in their desensitization and internalization. In HEK-293 cells expressing either hSPRDelta325 or hSPR, SP-induced desensitization of the two receptors was similar when measured by inositol triphosphate accumulation or by transient translocation of coexpressed PKCbetaII-GFP to the plasma membrane. Moreover, translocation of beta-arrestin 1 or 2-GFP (betaarr1-GFP or betaarr2-GFP) to the plasma membrane, and receptor internalization were also similar. However, hSPR and hSPRDelta325 differ in their phosphorylation and in their ability to form beta-arrestin-containing endocytic vesicles. Unlike hSPR, hSPRDelta325 is not phosphorylated to a detectable level in intact HEK293 cells, and whereas hSPR forms vesicles containing either betaarr1-GFP or betaarr2-GFP, hSPRDelta325 does not form any vesicles with betaarr1-GFP, and forms fewer vesicles with betaarr2-GFP. We conclude that truncated hSPR undergoes agonist-dependent desensitization and internalization without detectable receptor phosphorylation.  相似文献   

6.
7.
The structural basis for agonist-mediated sequestration and desensitization of the beta-adrenergic receptor (beta AR) was examined by oligonucleotide-directed mutagenesis of the hamster beta AR gene and expression of the mutant genes in mouse L cells. Treatment of these cells with the agonist isoproterenol corresponded to a desensitization of beta AR activity. A mutant receptor that bound agonist but did not couple to adenylate cyclase showed a dramatically reduced sequestration response to agonist stimulation. In contrast, beta AR mutants in which the C-terminus was truncated and/or in which two regions that have been proposed as phosphorylation substrates for cAMP-dependent protein kinase were removed showed normal sequestration responses. These results demonstrate that agonist-mediated sequestration of the beta AR can occur in the absence of the C-terminus of the protein and reveal a strong correlation between effective coupling to Gs and sequestration.  相似文献   

8.
Chu J  Zheng H  Loh HH  Law PY 《Cellular signalling》2008,20(9):1616-1624
Receptor desensitization involving receptor phosphorylation and subsequent betaArrestin (betaArr) recruitment has been implicated in the tolerance development mediated by mu-opioid receptor (OPRM1). However, the roles of receptor phosphorylation and betaArr on morphine-induced OPRM1 desensitization remain to be demonstrated. Using OPRM1-induced intracellular Ca(2+) ([Ca(2+)](i))release to monitor receptor activation, as predicted, [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO), induced OPRM1 desensitization in a receptor phosphorylation- and betaArr-dependent manner. The DAMGO-induced OPRM1 desensitization was attenuated significantly when phosphorylation deficient OPRM1 mutants or Mouse Embryonic Fibroblast (MEF) cells from betaArr1 and 2 knockout mice were used in the studies. Specifically, DAMGO-induced desensitization was blunted in HEK293 cells expressing the OPRM1S375A mutant and was eliminated in MEF cells isolated from betaArr2 knockout mice expressing the wild type OPRM1. However, although morphine also could induce a rapid desensitization on [Ca(2+)](i) release to a greater extent than that of DAMGO and could induce the phosphorylation of Ser(375) residue, morphine-induced desensitization was not influenced by mutating the phosphorylation sites or in MEF cells lacking betaArr1 and 2. Hence, morphine could induce OPRM1 desensitization via pathway independent of betaArr, thus suggesting the in vivo tolerance development to morphine can occur in the absence of betaArr.  相似文献   

9.
There is considerable evidence for the role of carboxyl-terminal serines 355, 356, and 364 in G protein-coupled receptor kinase (GRK)-mediated phosphorylation and desensitization of beta(2)-adrenergic receptors (beta(2)ARs). In this study we used receptors in which these serines were changed to alanines (SA3) or to aspartic acids (SD3) to determine the role of these sites in beta-arrestin-dependent beta(2)AR internalization and desensitization. Coupling efficiencies for epinephrine activation of adenylyl cyclase were similar in wild-type and mutant receptors, demonstrating that the SD3 mutant did not drive constitutive GRK desensitization. Treatment of wild-type and mutant receptors with 0.3 nm isoproterenol for 5 min induced approximately 2-fold increases in the EC(50) for agonist activation of adenylyl cyclase, consistent with protein kinase A (PKA) site-mediated desensitization. When exposed to 1 mum isoproterenol to trigger GRK site-mediated desensitization, only wild-type receptors showed significant further desensitization. Using a phospho site-specific antibody, we determined that there is no requirement for these GRK sites in PKA-mediated phosphorylation at high agonist concentration. The rates of agonist-induced internalization of the SD3 and SA3 mutants were 44 and 13%, respectively, relative to that of wild-type receptors, but the SD3 mutant recruited enhanced green fluorescent protein (EGFP)-beta-arrestin 2 to the plasma membrane, whereas the SA3 mutant did not. EGFP-beta-Arrestin2 overexpression triggered a significant increase in the extent of SD3 mutant desensitization but had no effect on the desensitization of wild-type receptors or the SA3 mutant. Expression of a phosphorylation-independent beta-arrestin 1 mutant (R169E) significantly rescued the internalization defect of the SA3 mutant but inhibited the phosphorylation of serines 355 and 356 in wild-type receptors. Our data demonstrate that (i) the lack of GRK sites does not impair PKA site phosphorylation, (ii) the SD3 mutation inhibits GRK-mediated desensitization although it supports some agonist-induced beta-arrestin binding and receptor internalization, and (iii) serines 355, 356, and 364 play a pivotal role in the GRK-mediated desensitization, beta-arrestin binding, and internalization of beta(2)ARs.  相似文献   

10.
An analysis of the functional role of a diacidic motif (Asp236-Asp237) in the third intracellular loop of the AT1A angiotensin II (Ang II) receptor (AT1-R) revealed that substitution of both amino acids with alanine (DD-AA) or asparagine (DD-NN) residues diminished Ang II-induced receptor phosphorylation in COS-7 cells. However, Ang II-stimulated inositol phosphate production, mitogen-activated protein kinase, and AT1 receptor desensitization and internalization were not significantly impaired. Overexpression of dominant negative G protein-coupled receptor kinase 2 (GRK2)K220M decreased agonist-induced receptor phosphorylation by approximately 40%, but did not further reduce the impaired phosphorylation of DD-AA and DD-NN receptors. Inhibition of protein kinase C by bisindolylmaleimide reduced the phosphorylation of both the wild-type and the DD mutant receptors by approximately 30%. The inhibitory effects of GRK2K220M expression and protein kinase C inhibition by bisindolylmaleimide on agonist-induced phosphorylation were additive for the wild-type AT1-R, but not for the DD mutant receptor. Agonist-induced internalization of the wild-type and DD mutant receptors was similar and was unaltered by coexpression of GRK2K220M. These findings demonstrate that an acidic motif at position 236/237 in the third intracellular loop of the AT1-R is required for optimal Ang II-induced phosphorylation of its carboxyl-terminal tail by GRKs. Furthermore, the properties of the DD mutant receptor suggest that not only Ang II-induced signaling, but also receptor desensitization and internalization, are independent of agonist-induced GRK-mediated phosphorylation of the AT1 receptor.  相似文献   

11.
Liu W  Brooks CL 《Biochemistry》2011,50(23):5333-5344
Hormone binding creates active receptor dimers for class 1 cytokine receptors; however, the detailed molecular mechanism by which these receptors are activated by their ligands is not well characterized, and it is unknown if these receptors share common mechanisms. A rotation model has been proposed for the activation of human erythropoietin receptor and human growth hormone receptor and is supported by evidence showing that additions of alanine at the junction of the transmembrane (TM) and intracellular (IC) domains and/or within the TM domain influenced receptor activities. This evidence suggests that alanine additions changed the relative orientations of the IC domains and their subsequent activation. We wished to determine if a similar mechanism was at play with human prolactin receptor (hPRLr). Up to four alanines were added between the TM and either the IC or extracellular (EC) domains to extend the TM helix and to rotate the IC or EC domains. Also, up to four glycines were placed between the TM and IC domains to provide increased flexibility between these two domains. Wild-type hPRLr or various mutant receptors were expressed in human embryonic kidney 293T cells that express endogenous Janus kinase 2. In the absence of human prolactin (hPRL), none of the alanine or glycine additions increased the level of receptor phosphorylation above that of wild-type hPRLr. In the presence of hPRL, both wild-type hPRLr and each of the mutant receptors were successfully phosphorylated. These data do not support a rotation mechanism for hPRLr activation or a requirement of a fixed spatial relationship between the TM and IC domains for hPRLr activation. In a second set of experiments, both wild-type hPRLr and either alanine- or glycine-extended receptors were coexpressed in 293T cells. In the absence of hPRL, there was no detectable phosphorylation of hPRLr. Such data do not support a piston movement between the hPRLr pair in their activation.  相似文献   

12.
The cytoplasmic domain of the insulin receptor (IR) beta-subunit contains cysteine (Cys) residues whose reactivity and function remain uncertain. In this study, we examined the ability of the bifunctional cross-linking reagent 1,6-bismaleimidohexane (BMH) to covalently link IR with interacting proteins that possess reactive thiols. Transfected Chinese hamster ovary cells expressing either the wild-type human IR, C-terminally truncated receptors, or mutant receptors with Cys --> Ala substitutions and mouse 3T3-L1 adipocytes were used to compare the BMH effect. The results showed the formation of a large complex between the wild-type human receptor beta-subunit and molecule X, a thiol-reactive membrane-associated protein, in both intact and semipermeabilized cells in response to BMH. Prior cell stimulation with insulin had only a modest effect in this process. Western blot analysis revealed that the receptor alpha-subunit was not present in the beta-X complex. The BMH cross-linking did not inhibit in vitro tyrosine phosphorylation of the receptor complexed with molecule X. Both the human IR Cys981Ala mutant and murine IR, that lacks the equivalent of human Cys(981), failed to react with BMH. Finally, no covalent association between IR beta-subunit and IRS-1, the protein tyrosine phosphatase LAR or SHP-2 was observed in BMH-treated cells expressing the wild-type human IR. These results demonstrate a striking difference in reactivity among the cytoplasmic IR beta-subunit thiols and clearly show that Cys(981) of human IR beta-subunit is in close proximity to a thiol-reactive membrane-associated protein under basal and insulin-stimulated conditions.  相似文献   

13.
Abstract: The substance P (neurokinin-1) receptor belongs to the family of seven putative transmembrane domain receptors that are coupled via G proteins to phospholipase C activation. Homologous desensitization of substance P-stimulated responses has been described in various systems. The rat neurokinin-1 receptor and a truncated mutant lacking the carboxyl-terminal region were expressed in Chinese hamster ovary cells to examine the mechanisms of substance P-induced desensitization. Wild-type and truncated receptor-bearing cells were indistinguishable in agonist binding affinity and EC50 of substance P-induced accumulation of 3H-inositol phosphates. Substance P-induced responses continued for 30–45 min in cells expressing wild-type and truncated receptors as well as in rat LRM-55 and human U373 cells, which express endogenous neurokinin-1 receptors. In transfected cells expressing the wild-type receptor, CP-96,345 added 15 min after substance P blocked further responses, demonstrating the continuing presence of responsive receptors. The rates of accumulation of 3H-inositol phosphates were four times greater in the initial 15 s of stimulation than for the next 20 min for both wild-type and truncated receptor types. This decrease in rate of substance P-stimulated phosphatidylinositol hydrolysis is therefore not dependent on the carboxyl-terminal region of the rat neurokinin-1 receptor, which contains 26 serine and threonine residues. These results are discussed in relation to current ideas regarding neurokinin-1 receptor desensitization.  相似文献   

14.
The first example of the use of a reporter affinity label (NNA) that contains a fluorogenic naphthalene dialdehyde moiety to identify neighboring lysine and cysteine residues at a recognition site is described. The opioid receptors have served as the proof-of-concept because they contain multiple lysine and cysteine residues. The kinetics of isoindole formation resulting from covalent binding of NNA to wild-type and mutant opioid receptors were followed in cultured cells using flow cytometry. The finding that NNA bound to mutant mu opioid receptors (K233R and C235S) without producing specific fluorescence enhancement suggested that covalent bonding occurred at these positions to produce an isoindole fluorophore in the wild-type mu receptor. The similar kinetics of fluorophore formation for wild-type mu, delta, and kappa opioid receptors suggest that these conserved residues are the cross-linking sites in all three types of opioid receptors. The combined utilization of a reporter affinity label and site-directed mutagenesis offers a more expeditious method of identifying cross-linking at a recognition site when compared to classical procedures.  相似文献   

15.
Receptor desensitization by G-protein receptor kinases (GRK) and arrestins is likely to be an important component underlying the development of tolerance to opioid drugs. Reconstitution of this process in Xenopus oocytes revealed distinct differences in the kinetics of GRK and arrestin regulation of the closely related opioid receptors mu (MOR), delta (DOR), and kappa (KOR). We demonstrated that under identical conditions, GRK and arrestin-dependent desensitization of MOR proceeds dramatically slower than that of DOR. Furthermore, GRK3 phosphorylation sites required for opioid receptor desensitization also greatly differ. The determinants for DOR and KOR desensitization reside in the carboxyl-terminal tail, whereas MOR depends on Thr-180 in the second intracellular loop. Although this later finding might indicate an inefficient phosphorylation of MOR Thr-180, increasing the amount of arrestin expressed greatly increased the rate of MOR desensitization to a rate comparable with that of DOR. Similarly, coexpression of a constitutively active arrestin 2(R169E) with MOR and DOR desensitized both receptors in an agonist-dependent, GRK-independent manner at rates that were indistinguishable. Together, these data suggest that it is the activation of arrestin, rather than its binding, that is the rate-limiting step in MOR desensitization. In addition, mutation of Thr-161 in DOR, homologous to MOR Thr-180, significantly inhibited the faster desensitization of DOR. These results suggest that DOR desensitization involves phosphorylation of both the carboxyl-terminal tail and the second intracellular loop that together leads to a more efficient activation of arrestin and thus faster desensitization.  相似文献   

16.
The human vitamin D receptor (hVDR), which is a substrate for several protein kinases, mediates the actions of its 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) ligand to regulate gene expression. To determine the site, and functional impact, of cAMP-dependent protein kinase (PKA)-catalyzed phosphorylation of hVDR, we generated a series of C-terminally truncated and point mutant receptors. Incubation of mutant hVDRs with PKA and [gamma-32P]ATP, in vitro, or overexpressing them in COS-7 kidney cells labeled with [32P]orthophosphate, revealed that serine-182 is the predominant residue in hVDR phosphorylated by PKA. An aspartate substituted mutant (S182D), incorporating a negative charge to mimic phosphorylation, displayed only 50% of the transactivation capacity in response to 1,25(OH)2D3 of either wild-type or an S182A-altered hVDR. When the catalytic subunit of PKA was overexpressed, a similar reduction in wild-type but not S182D hVDR transactivity was observed. In a mammalian two-hybrid system, S182D bound less avidly than wild-type or S182A hVDR to the retinoid X receptor (RXR) heterodimeric partner that co-mediates vitamin D responsive element recognition and transactivation. These data suggest that hVDR serine-182 is a primary site for PKA phosphorylation, an event that leads to an attenuation of both RXR heterodimerization and resultant transactivation of 1,25(OH)2D3 target genes.  相似文献   

17.
GRKs play a key role in regulating G protein-coupled receptor (GPCR) responsiveness. To investigate the role of GRKs in desensitization of TP, we replaced threonines with favorable phosphorylation motifs for GRKs (positions 226 and 230) with alanine. Mutant and wild-type receptors were expressed in cell culture models and clones expressing similar numbers of receptors were studied. We found that: (1) affinity and specificity of thromboxane A2 (TxA2) binding to mutant TP were identical to the wild-type, (2) replacement of threonines 226 and 230 with alanines delayed the onset of agonist-induced desensitization, and (3) inhibition of endogenous GRK activity with a dominant-negative construct inhibited agonist-induced phosphorylation and enhanced responsiveness of wild-type TP but had little effect on responsiveness of the receptor mutant. These data are consistent with the notion that GRKs contribute to desensitization of TP.  相似文献   

18.
19.
Phosphorylation-deficient serotonin 5-HT(2C) receptors were generated to determine whether phosphorylation promotes desensitization of receptor responses. Phosphorylation of mutant 5-HT(2C) receptors that lack the carboxyl-terminal PDZ recognition motif (Ser(458)-Ser-Val-COOH; DeltaPDZ) was not detectable based on a band-shift phosphorylation assay and incorporation of (32)P. Treatment of cells stably expressing DeltaPDZ or wild-type 5-HT(2C) receptors with serotonin produced identical maximal responses and EC(50) values for eliciting [(3)H]inositol phosphate formation. In calcium imaging studies, treatment of cells expressing DeltaPDZ or wild-type 5-HT(2C) receptors with 100 nm serotonin elicited initial maximal responses and decay rates that were indistinguishable. However, a second application of serotonin 2.5 min after washout caused maximal responses that were approximately 5-fold lower with DeltaPDZ receptors relative to wild-type 5-HT(2C) receptors. After 10 min, responses of DeltaPDZ receptors recovered to wild-type 5-HT(2C) receptor levels. Receptors with single mutations at Ser(458) (S458A) or Ser(459) (S459A) decreased serotonin-mediated phosphorylation to 50% of wild-type receptor levels. Furthermore, subsequent calcium responses of S459A receptors were diminished relative to S458A and wild-type receptors. These results establish that desensitization occurs in the absence of 5-HT(2C) receptor phosphorylation and suggest that receptor phosphorylation at Ser(459) enhances resensitization of 5-HT(2C) receptor responses.  相似文献   

20.
Agonist-stimulatedphosphorylation of guanine nucleotide-binding protein (Gprotein)-coupled receptors has been recognized as an importantmechanism for desensitization by interfering with coupling of theactivated receptor with its G protein. We recently described a mutantof the CCK receptor that modified two of five key sites ofphosphorylation (S260,264A) and eliminated agonist-stimulated receptorphosphorylation, despite normal ligand binding and signaling (20). As expected, this nonphosphorylated mutant hadimpaired rapid desensitization but was ultimately able to bedesensitized by normal receptor internalization. Here we demonstratethat this mutant receptor is also defective in resensitization, withabnormal recycling to the cell surface. To explore this, anotherreceptor mutant was prepared, replacing the same serines withaspartates to mimic the charge of serine-phosphate (S260,264D). Thismutant was expressed in a Chinese hamster ovary cell line and shown to bind CCK normally. It had accelerated kinetics of signaling and desensitization and was phosphorylated in response to agonist occupation, with all other normal sites of phosphorylation modified. Itwas internalized like wild-type receptors and was resensitized andtrafficked normally. This provides evidence for an additional importantfunction for phosphorylation of G protein-coupled receptors. Phosphorylation may induce a conformational change in the receptor toexpose other potential sites of phosphorylation and to expose domainsinvolved in the targeting and trafficking of endosomes. Thehierarchical phosphorylation of these sites may play a key role inreceptor regulation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号