首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies have been made on the content of glycogen and the activity of glucose-6-phosphatase in tissues of adult frog Rana temporaria (liver, brain, pia mater, n. ischiadicus, fast and slow muscles) and tadpoles (liver, tail muscles). It was found that the enzymic activity is somewhat higher in the liver of tadpoles than that in the liver of adult frogs, being low in the tail muscles. Pia mater and n. ischiadicus exhibit higher activity of glucose-6-phosphatase as compared to the liver. In tadpoles, glycogen content of the liver increases from the 40th stage of metamorphosis and decreases in the tail muscles to the 42nd-50th stages. Glycogen content in tissues other than liver of adult frogs is higher than in similar tissues of mammals.  相似文献   

2.
Actin Degradation in the Metamorphosing Bullfrog Tadpole Tail   总被引:1,自引:1,他引:0  
Degradation of tail muscle proteins was investigated during metamorphosis of Rana catesbeiana , tadpole. Regressing tail muscle contained actomyosin which was comparable to that of non-regressing tail muscle in its physico-chemical character, althouth the actomyosin content of the former tissue decreased as compared to the latter. However, when muscle proteins were extracted in the SDS-containing medium (TSM) and analyzed by SDS-polyacrylamide gel electrophoresis, we found that the protein band corresponding to actin disappeared completely during the late climax stage of metamorphosis. Detailed studies on this phenomenon showed that the apparent absence of actin on SDS-polyacrylamide gel electrophoresis was dependent upon the metamorphic stages of the tadpoles investigated. When TSM extract from the premetamorphic tadpole tail muscles which contained actin was incubated with the same extract from tadpoles of the climax stage, actin derived from premetamorphic tadpole disappeared on gel electrophoresis, indicating that tail muscle tissues of the climax stages contain the actin-degrading enzyme. Characterization of the enzyme was performed with a crude extract using actin prepared from rabbit thigh muscle as a substrate. Actin degrading activity showed incubation time- and temperature-dependency and the activity decreased gradually when the extract was preheated at increasing temperatures with the complete inactivation at 100°C. The major degradation products of actin hydrolysis by the enzyme had a Mr=28,000 and 14,000 which indicated the enzyme splits actin at a specific point. The activity had an optimum pH of 7.5 and was inhibited by leupeptin and iodoacetate and required the presence of a thiol reagent.  相似文献   

3.
The histochemical activity of adenosine triphosphatase (ATPase) was studied at light and electron microscopic levels in larval tail musculature of Rana catesbeiana and Rana ornativentris during late metamorphic stages. The presence of low, moderate or dark reaction of K2-EDTA-preincubated Ca++-ATPase was correlated with the variable degree of degeneration of white fibres even at the late stage of tail resorption. The reasons for an increase in this ATPase activity in degenerating white muscle fibres are discussed. Irrespective of the degree of degeneration, all red fibres showed high ATPase reaction. During myocytolysis, it is shown that the SR vesicles accumulate electron dense amorphous material. The degree of myofibrillar disintegration correlated with decrease in ultrastructural reaction product for Mg++-ATPase. Although grouped atrophy of muscle fibres (as seen in Xenopus laevis, den Hartog Jager et al., 1973, 1975) was absent in musculature of resorptive tails, ultrastructural characteristics including proliferation of SR and dilation of its vesicles represent alteration of the normal neural influence on the skeletal muscle fibres.  相似文献   

4.
桓仁林蛙蝌蚪胚后发育的初步观察   总被引:3,自引:2,他引:1  
本文对桓仁林蛙蝌蚪胚后发育的过程和形态特征进行了观察、测量和描述,并与中国林蛙和昆嵛林蛙进行了比较.胚后发育可分为19期,对其后肢芽、趾、前肢的发育,唇齿的变化过程,口、鼻、眼的位置与形状,以及肛管与尾的变化等方面做了系统的描述.  相似文献   

5.
1. Alanine aminopeptidase activity and autolysis increase concomitantly in tail tissue of Rana catesbeiana tadpoles during metamorphosis. 2. significant increases first appear at Taylor and Kollros state XX and coincide with the beginning of tail regression as determined by the tail wt body wt ration. 3. The results suggest a role of alanine aminopeptidase in the mechanism of tail resorption.  相似文献   

6.
The effect of colchicine on myogenesis in vivo has been studied in the regenerating tadpole tail of the frog, Rana pipiens, and in the abdominal molting muscles of a blood-sucking bug, Rhodnius prolixus Stål. Colchicine is shown to disrupt microtubules in the differentiating muscle cells of both these organisms. The disruption of microtubules is correlated with a loss of longitudinal anisometry in the myoblasts and myotubes of the regeneration blastema in the tadpole tail. Before colchicine treatment, the myotubes contain longitudinally oriented myofibrils. After colchicine treatment, rounded, multinucleate myosacs containing randomly oriented myofibrils are present. It is suggested that the primary function of microtubules in myogenesis in the Rana pipiens tadpole is the maintenance of cell shape. The abdominal molting muscles of Rhodnius undergo repeated phases of differentiation and dedifferentiation of the sarcoplasm. However, the longitudinal anisometry of the muscle fibers is maintained in all phases by the attachments of the ends of the fibers to the exoskeleton, and microtubule disruption does not alter cell shape. The orientation of the developing myofibrils is also unaltered, indicating that the microtubules do not directly align or support the myofibrils in this system.  相似文献   

7.
Studies have been made on glycogen content as well as on the activity of phosphorylase and glucose-6-phosphatase in fast and slow muscles from representatives of 6 classes of vertebrates (Lampetra fluviatilis, Cyprinus carpio, Rana temporaria, Rana ridibunda, Emys orbicularis, hen, rat). Glycogen level and glucose-6-phosphatase activity are either higher in slow muscles, or practically identical in both types of muscles (glucose-6-phosphatase is absent from the fast muscles of hens and rats). On the contrary, phosphorylase activity is higher in fast muscles, this finding being true only for higher vertebrates and lampreys.  相似文献   

8.
The tail of the Alytes obstetricans tadpole, isolated at different stages (end of proclimax and climax), was studied in organ culture. The addition of thyroxine at a concentration of 5.10(-7) induces an involution slower than in vivo. Besides, this regression is comparatively slower in similar conditions, than in Xenopus laevis. This delay could be explained by the important volume and the very developed musculature of this anuran tail. Ultrastructural controls reveal the form of the muscles, the neural tube and the phagocytic cells in the tail metamorphising in vitro.  相似文献   

9.
Investigations of individual variability have allowed us to reveal the crucial (= nodal) stages in embryogenesis of the moor frog (Rana arvalis Nills.). These crucial stages are: the late gastrula stage (stages 18-20), the hatching stages (stages 32-33) and, apparently, early metamorphosis (stage 39). Moreover, we have found that each embryonic structure passes through its specific crucial stages. For example, stage 34 is crucial for the trait "tail width" but is internodal for all other embryonic traits. At this stage, larva passes from an attached to a free-swimming life style. We also found considerable differences between the different frog populations in the the level of developmental variability. These differences were associated with internodal developmental stages.  相似文献   

10.
The histochemical activities of succinic dehydrogenase (SDH) and Ca++-activated ATPase (pHs 7.4 and 9.4) were studied in the larval tail musculature of Rana japonica, Rana catesbeiana and Rana ornativentris. The ATPase reaction product was detected by both light and electron microscopy. 'Red' and 'white' muscle fibres, as distinguished by SDH, showed high and low Ca++-ATPase reaction, respectively, at pHs 7.4, 9.4 and following preincubation in cold K2-EDTA solution. The ultrastructural investigation of Ca++-ATPase reaction at pH 7.4 by the Ca++-citrophosphate technique demonstrated electron-dense reaction product in association with A, I and 'Z' bands, intermyofibrillar (SR) compartment and the mitochondrial inner chamber. However, Pb++ precipitation technique demonstrated Mg++-activated myosin ATPase activity at pH 9.2 ultrastructurally. The present histochemical data suggest that the anuran larval tail 'red' muscle fibres are possible 'slow,' and emphasize a possible lack of correlation between the speed of contraction with their ATPase activity. Moreover, 'red' muscle fibres of the anuran tai- musculature are not equivalent to 'Type I' fibres of higher chordates.  相似文献   

11.
Thyroxine (T4)-prolactin interactions on hepatic arginase and ornithine transcarbamylase (OTC) as well as hind legs, tail, digestive tract and median eminence were investigated in tadpoles, Rana catesbeiana. Prolactin completely blocked T4-induced tail resorption, but failed to suppress hind-leg growth, shortening of digestive tract and promotion by T4 of the median eminence development. Prolactin blocked T4-induced increase in hepatic arginase activity but not in hepatic OTC activity. A possibility that T4 and prolactin are regulating the hepatic arginase indirectly is discussed.  相似文献   

12.
Summary The histochemical activity of adenosine triphosphatase (ATPase) was studied at light and electron microscopic levels in larval tail musculature of Rana catesbeiana and Rana ornativentris during late metamorphic stages. The presence of low, moderate or dark reaction of K2-EDTA-preincubated Ca++-ATPase was correlated with the variable degree of degeneration of white fibres even at the late stage of tail resorption. The reasons for an increase in this ATPase activity in degenerating white muscle fibres are discussed. Irrespective of the degree of degeneration, all red fibres showed high ATPase reaction. During myocytolysis, it is shown that the SR vesicles accumulate electron dense amorphous material. The degree of myofibrillar disintegration correlated with decrease in ultrastructural reaction product for Mg++-ATPase. Although grouped atrophy of muscle fibres (as seen in Xenopus laevis, den Hartog Jager et al., 1973, 1975) was absent in musculature of resorptive tails, ultrastructural characteristics including proliferation of SR and dilation of its vesicles represent alteration of the normal neural influence on the skeletal muscle fibres.  相似文献   

13.
Investigations of individual variability have allowed us to reveal the crucial (=nodal) stages in embryogenesis of the moor frog (Rana arvalis Nills.). These crucial stages are: the late gastrula stage (stages 18–20), the hatching stages (stages 32–33) and, apparently, early metamorphosis (stage 39). Moreover, we have found that each embryonic structure passes through its specific crucial stages. For example, stage 34 is crucial for the trait “tail width” but is internodal for all other embryonic traits. At this stage, larva passes from an attached to a free-swimming life style. We also found considerable differences between the different frog populations in the the level of developmental variability. These differences were associated with internodal developmental stages.  相似文献   

14.
We have used immunocytological techniques to examine the developmental expression of the Ca2+-binding protein parvalbumin in Xenopus laevis embryos. Western blot experiments show that at least three different forms of parvalbumin are expressed during embryogenesis; the tadpole tail expresses one form, adult brain expresses another, mylohyoid muscle expresses both, and gastrocnemius and sartorius muscles express these two plus a third form. Parvalbumin (PV) is first detectable by immunofluorescence at stages 24-25 of development, a time when myotomal muscles are differentiating and contractile activity occurs spontaneously in embryos. At metamorphosis, PV is expressed in developing limb muscles. While the majority of skeletal muscle fibers express high levels of PV in both embryos and adults, a second fiber type has no detectable PV. The arrangement of PV-containing fibers is stereotyped in each muscle group examined. Histochemical staining of tadpole muscles indicate that PV-containing fibers correspond to fast-twitch skeletal muscles, whereas those without PV correspond to slow-twitch muscles. During tail resorption at metamorphosis, PV appears to be extruded from dying tail muscle cells and taken up by phagocytic cells.  相似文献   

15.
The pattern of tissue degradation in the tadpole tail of the bullfrog, Rana catesbeiana , was studied histologically and biochemically. Tadpoles at four metamorphic stages (premetamorphic stage, stage XIII; prometamorphic stage, stage XVIII; early to middle climax stage, stage XXII; late climax stage, stage XXIII) were examined. In the histological study, tissues were stained by two different methods, i.e., Masson's trichrome stain and Van Gieson's stain. The results are summarized as follows: 1) Muscle tissues degenerated earlier thatn connective tissues; 2) Collagen density increased as tissue degraded; 3) At stage XXIII, degenerating and fragmented muscle tissues, surrounded by connective tissues, were seen, and 4) At the late climax stage, cell density was greatly increased as compared to preceding stages.
The biochemical studies are summarized as follows; 1) The general catabolic pattern of tail proteins seems to differ between the premetamorphic and late climax stages; 2) The total hydroxyproline content per unit wet weight of the tail increased significantly at the late climax stage as compared to the premetamorphic stage, supporting the histological observations, and 3) Collagen degradation products were obtained at the late climax stage on Sephadex G-75 columns.  相似文献   

16.
Effects of temperature and Zn2+ on the isometric contractile properties of toe muscle fibers of Rana catesbeiana and Xenopus laevis were studied. The maximum twitch tension almost doubled when the temperature was lowered from 20 to 4 degrees C in Rana muscles but not in Xenopus muscles, although the duration of action potential in Xenopus muscle was increased slightly more than that seen in the Rana species. The maximum rate of rise of tension was greater in Xenopus muscle than in the Rana muscle, at 20 degrees C. The prolongation of the time-to-peak tension following exposure to low temperature (4 degrees C) was more pronounced in Rana than in Xenopus muscles. These results suggest that the speed of release and reuptake of Ca2+ by the sarcoplasmic reticulum (SR) differs in Rana and Xenopus muscles and that these factors may be related to differences in the SR and the T-tubular morphology. In Rana muscles, Zn2+ prolonged the falling phase of the action potential and potentiated the twitch tension. In Xenopus muscles, Zn2+ marginally prolonged the duration of action potential and the twitch tension was not markedly potentiated. These results indicate that Zn2+ potentiates the twitch by prolonging the action potential and that Rana muscles are more sensitive to the effects of Zn2+.  相似文献   

17.
几种农药对黑斑蛙黑斑蛙胚胎及蝌蚪的毒性   总被引:1,自引:0,他引:1  
本文报道了常用的几种农药对黑斑蛙胚胎及蝌蚪发育的毒性影响。结果表明 :农药对黑斑蛙胚胎、蝌蚪期的毒性大小依次为使它隆 >多效唑 >多菌灵 >异丙隆 >甲胺磷。胚胎期死亡时表现为胚体腐烂 ;蝌蚪期死亡时则表现为头部膨大 ,尾部缩小 ,弯曲。畸形在两个时期都表现为腹部膨大呈透明状和尾部弯曲  相似文献   

18.
To test how differences in locomotor behaviors may be reflected in muscle fiber-type diversity within anurans, a comparison of hindlimb muscles between the powerful terrestrial hopper, Rana catesbeiana, and the tree frog, Litoria caerulea, was done. One postural muscle (tibialis posticus, TP) and one primary hopping muscle (plantaris longus, PL), were characterized to identify muscle fiber types using standard histochemical methods. In addition, spectophotometric analysis of activity levels of the oxidative enzyme citrate synthase (CS) and the glycolytic enzyme lactate dehydrogenase (LDH) were done in each muscle. In spite of presumed differences in behavior between the species, we found no significant differences in the proportions of the identified fiber types when the muscles were compared across species. In addition, there were no significant differences in the proportions of the different fiber types between the postural versus phasic muscles within species. Within Rana, the postural muscle (TP) had greater oxidative capacity (as measured by CS activity) than did the phasic muscle (PL). Both muscles had equivalent LDH activities. Within Litoria, PL and TP did not differ in either LDH or CS activities. Both PL and TP of Litoria had less LDH activity and greater CS activity than their homologs in Rana. Thus, in spite of the uniform populations of fiber types between muscles and species, the metabolic diversity based on enzyme activity is consistent with behavioral differences between the species. These results suggest that the range of functional diversity within fiber types may be very broad in anurans, and histochemical fiber typing alone is not a clear indicator of their metabolic or functional properties.  相似文献   

19.
Using tadpoles of the lake frog Rana ridibunda Pall. during metamorphosis, a study was made of the heat resistance of the provisional muscle tissue of the tail and of that of two definitive muscles belonging to low-resistant (musculus iliofibularis) and high-resistant (musculus gastrocnemius) groups. It has been shown that during the late metamorphosis a statistically significant direct relation exists between the heat resistance of the provisional muscle tissue of the tail and definitive m. iliofibularis. A comparison with the earlier published data points to a positive correlation between each of these two characteristics and the survival of larvae at high injurious temperature.  相似文献   

20.
Presence of a thyroxine-binding protein was demonstrated in vivo in cell sap of tail and liver of metamorphosing Rana catesbeiana tadpoles. Thyroxine-binding protein was not present in tail of prematamorphic tadpoles while it appeared during progressing metamorphosis roughly coinciding with the beginning of tail resorption. Susceptibility to pronase indicates that this thyroxine-binding macromolecule is protein in nature. Thyroxine-binding in liver was already present during premetamorphic stages and increased further during metamorphosis. A further difference between tail and liver thyroxine-binding protein was evidenced by molecular sieve chromatography on Sephadex G-200 indicating a molecular weight of thyroxine-binding protein in the tail of 60 000 as opposed to 42 000 for liver. Scatchard analysis of tail cell sap of tadpoles in metamorphic climax revealed a high affinity thyroxing binding site (Kd of 2 - 10(-10) M) of low capacity (1.7 pmol per mg protein) while tadpoles in premetamorphic stage had a thyroxine-binding site of lower affinity (9 - 10(-10) M) and higher capacity (4.8 pmol per mg protein). Thus affinity of thyroxine binding is 4-fold in metamorphic climax and appears to reflect the appearance of thyroxine binding observed in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号