首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matalka KZ  Ali D  Khawad AE  Qa'dan F 《Cytokine》2007,40(3):235-240
Stimulating or modulating the release of cytokines by immunomodulators or immunostimulating agents is an attractive mode for treating several diseases such as viral infections. For instance, patients with viral infections may be in need of increasing or inducing T helper 1 (Th1) or proinflammatory cytokines, which ultimately activate T cytotoxic and Natural killer lymphocytes to kill virally infected cells. Of these agents, we found that Eriobotrya japonica hydrophilic leaf extract (EJHE) can induce and modulate cytokines in dose-dependent manner. Twenty-four hour exposure of increasing concentrations of EJHE increased significantly (p < 0.001) the production of IFN-γ and TNF-α, from PHA+LPS-stimulated whole blood. However, the production of IFN-γ and TNF-α plateaued at high EJHE concentrations (10–100 μg/ml). No significant changes in the production of IL-10 were seen. In addition, EJHE at 1 and 10 μg/ml reversed significantly (p < 0.01) the inhibitory effect of hydrocortisone on the IL-12 p70, IFN-γ and TNF-α production from PHAS+LPS stimulated whole blood. Without PHA and LPS, EJHE was found to induce significantly (p < 0.001) IFN-γ, IL-12 p70, TNF-α, and IL-10 from whole blood culture in concentration dependent manner. The maximum induction of IFN-γ, IL-12 p70, and TNF-α by EJHE was at 1 and 10 μg/ml. On the other hand, IL-10 induction kept increasing even at the highest concentration used (100 μg/ml) of EJHE. Furthermore, intra-peritoneal injection of EJHE into mice increased significantly serum cytokines level mainly at 10 and 100 μg/ml. Two-hour post i.p. injection, EJHE increased serum IFN-γ, TNF-α, and IL-10 to 750, 1000, and 250 pg/ml, respectively. However, 24 h post i.p. injection, the levels of TNF-α, and IL-10 were similar to basal levels but IFN-γ levels were 200 pg/ml. These results indicate that EJHE induces proinflammatory and Th1 cytokines in concentration dependent manner and the effect of this induction should be studied further in viral models to check the efficacy of such cytokine induction.  相似文献   

2.

Background

Intracellular pathogens have developed elaborate strategies for silent infection of preferred host cells. Chlamydia pneumoniae is a common pathogen in acute infections of the respiratory tract (e.g. pneumonia) and associated with chronic lung sequelae in adults and children. Within the lung, alveolar macrophages and polymorph nuclear neutrophils (PMN) are the first line of defense against bacteria, but also preferred host phagocytes of chlamydiae.

Methodology/Principal Findings

We could show that C. pneumoniae easily infect and hide inside neutrophil granulocytes until these cells become apoptotic and are subsequently taken up by macrophages. C. pneumoniae infection of macrophages via apoptotic PMN results in enhanced replicative activity of chlamydiae when compared to direct infection of macrophages, which results in persistence of the pathogen. Inhibition of the apoptotic recognition of C. pneumoniae infected PMN using PS- masking Annexin A5 significantly lowered the transmission of chlamydial infection to macrophages. Transfer of apoptotic C. pneumoniae infected PMN to macrophages resulted in an increased TGF-ß production, whereas direct infection of macrophages with chlamydiae was characterized by an enhanced TNF-α response.

Conclusions/Significance

Taken together, our data suggest that C. pneumoniae uses neutrophil granulocytes to be silently taken up by long-lived macrophages, which allows for efficient propagation and immune protection within the human host.  相似文献   

3.
The sst1, “supersusceptibility to tuberculosis,” locus has previously been shown to be a genetic determinant of host resistance to infection with the intracellular pathogen, Mycobacterium tuberculosis. Chlamydia pneumoniae is an obligate intracellular bacterium associated with community acquired pneumonia, and chronic infection with C. pneumoniae has been linked to asthma and atherosclerosis. C. pneumoniae is a highly adapted pathogen that can productively infect macrophages and inhibit host cell apoptosis. Here we examined the role of sst1 in regulating the host response to infection with C. pneumoniae. Although mice carrying the sst1 susceptible (sst1S) locus were not impaired in their ability to clear the acute infection, they were dramatically less tolerant of the induced immune response, displaying higher clinical scores, more severe lung inflammation, exaggerated macrophage and neutrophil influx, and the development of fibrosis compared to wild type mice. This correlated with increased activated caspase-3 in the lungs of infected sst1S mice. Infection of sst1S macrophages with C. pneumoniae resulted in a shift in the secreted cytokine profile towards enhanced production of interferon-β and interleukin-10, and induced apoptotic cell death, which was dependent on secretion of interferon-β. Intriguingly macrophages from the sst1S mice failed to support normal chlamydial growth, resulting in arrested development and failure of the organism to complete its infectious cycle. We conclude that the sst1 locus regulates a shared macrophage-mediated innate defense mechanism against diverse intracellular bacterial pathogens. Its susceptibility allele leads to upregulation of type I interferon pathway, which, in the context of C. pneumoniae, results in decreased tolerance, but not resistance, to the infection. Further dissection of the relationship between type I interferons and host tolerance during infection with intracellular pathogens may provide identification of biomarkers and novel therapeutic targets.  相似文献   

4.
5.
Background: Cervical cancer is a common malignant disease in female patients accompanied by activation of autophagy in tumor cells. However, the exact regulatory factors of autophagy and its effects on the immune response remain unknown.Methods: The induction of autophagy in HeLa and SiHa cells treated with IFN-γ, tryptophan depletion, kynurenine and epacadostat was detected by western blot analysis and by an autophagy detection kit. Following co-culture with pre-treated HeLa and SiHa cells, U937 cells were analyzed by flow cytometry to detect CD80, CD86, CD163 and CD206 expression and the induction of phagocytosis.Results: IFN-γ caused a significant increase in the autophagy levels of HeLa and SiHa cells by promoting indoleamine-2,3-dioxygenase-1 (IDO1) expression. The induction of phagocytosis in HeLa and SiHa cells and the expression levels of CD80 and CD86 in U937 cells were increased significantly following treatment with recombinant human IFN-γ. This effect was associated with the induction of tumor cell autophagy. IFN-γ treatment and IDO1 overexpression promoted tryptophan depletion and kynurenine accumulation in cervical cancer cells. The latter was more potent in inducing autophagy of cervical cancer cells and promoting phagocytosis of macrophages. In vivo, IDO1 overexpression restricted tumor growth in C57 mice and enhanced the induction of phagocytosis in macrophages.Conclusions: IFN-γ promoted induction of autophagy and macrophage phagocytosis in cervical cancer cells possibly via IDO1 expression and kynurenine metabolism.  相似文献   

6.
Dendritic cells (DC) interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC) were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS). Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1). Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines) showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention of type 1 diabetes autoimmunity.  相似文献   

7.
Ceramide, as a second messenger, initiates one of the major signal transduction pathways in tumor necrosis factor-α (TNF-α)-induced apoptosis. Glucosylceramide synthase (GCS) catalyzes glycosylation of ceramide and produces glucosylceramide. By introduction of the GCS gene, cytotoxic resistance to TNF-α has been conferred in human breast cancer cells. MCF-7/GCS-transfected cells expressed 4.1-fold higher levels of GCS activity and exhibited a 15-fold (P < 0.0005) greater EC50 for TNF-α, compared with the parental MCF-7 cell line. DNA fragmentation and DNA synthesis studies showed that TNF-α had little influence on the induction of apoptosis or on growth arrest in MCF-7/GCS cells, compared to MCF-7 cells. These studies reveal that TNF-α resistance in MCF-7/GCS cells is closely related to ceramide hyperglycosylation, a hallmark of this transfected cell line, and resistance was not aligned with changes in TNF receptor 1 expression. This work demonstrates that GCS, which catalyzes ceramide glycosylation, potentiates cytotoxic resistance to TNF-α.  相似文献   

8.
9.
Chlamydophila pneumoniae was shown to prevent IFNγ‐inducible upregulation of MHC‐class II molecules by secreting chlamydial protease‐like activity factor (CPAF) into the cytosol of those host cells which support the complete bacterial replication cycle. CPAF acts by degrading upstream stimulatory factor 1 (USF‐1). However, in cells like bone marrow‐derived macrophages (BMM), which restrict chlamydial replication, we show that CPAF expression is barely detectable and the expression of USF‐1 is induced upon infection with C. pneumoniae. Nevertheless, the infection still reduced base line and prevented IFNγ‐inducible MHC‐class II expression. Similar results were obtained with heat‐inactivated C. pneumoniae. In contrast, reduction of MHC‐class II molecules was not observed in MyD88‐deficient BMM. Reduction of IFNγ‐inducible MHC‐class II expression by C. pneumoniae in BMM was mediated in part by the MAP‐kinase p38. Infection of murine embryonic fibroblasts (MEF) with C. pneumoniae, which allow chlamydial replication, induced the expression of CPAF and decreased USF‐1 and MHC‐class II expression. Treatment of these cells with heat‐inactivated C. pneumoniae reduced USF‐1 and MHC‐class II expression to a much lower extent. In summary, C. pneumoniae downregulates MHC‐class II expression by two cell type‐specific mechanisms which are either CPAF‐independent and MyD88‐dependent like in BMM or CPAF‐dependent like in MEFs.  相似文献   

10.
We investigated the role of wild-type p53 and c-myc activity in apoptosis induced by a combination of natural human tumor necrosis factor alpha (TNF-α) and natural human interferon alpha (IFN-α). Studies were performed with two human non–small-cell lung cancer cell lines, H226b, which has wild-type p53, and H226br, which has a mutant p53. The combination of IFN-α and TNF-α significantly inhibited cell growth and induced apoptotic cell death of both H226b and H226br, compared with IFN-α or TNF-α alone. Treatment with one or both cytokines did not affect the expression level of p53 in both cell lines. These results suggest that the combination of IFN-α/TNF-α induces apoptotic cell death through a p53- independent pathway. The c-myc oncogene is known to be involved in apoptosis induced by TNF. Antisense c-myc oligonucleotides have been reported to modulate cell growth or apoptosis in several cell lines. Antisense oligodeoxynucleotides were added to the culture of H226br cells before the addition of IFN-α/TNF-α. Antisense c-myc inhibited IFN-α/TNF-α cytotoxicity and apoptotic cell death. In conclusion, this study provides support for the speculation that TNF-α/IFN-α induce apoptosis through a c-myc–dependent pathway rather than a p53-dependent pathway.  相似文献   

11.

Background

Waddlia chondrophila (W. chondrophila) is an emerging abortifacient organism which has been identified in the placentae of humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial abortifacients, such as Chlamydia abortus (C. abortus). This study investigates the growth of the organism and its effects upon pro-inflammatory cytokine expression in a ruminant placental cell line which we have previously utilised in a model of C. abortus pathogenicity.

Methodology/Principal Findings

Using qPCR, fluorescent immunocytochemistry and electron microscopy, we characterised the infection and growth of W. chondrophila within the ovine trophoblast AH-1 cell line. Inclusions were visible from 6 h post-infection (p.i.) and exponential growth of the organism could be observed over a 60 h time-course, with significant levels of host cell lysis being observed only after 36 h p.i. Expression of CXCL8, TNF-α, IL-1α and IL-1β were determined 24 h p.i. A statistically significant response in the expression of CXCL8, TNF-α and IL-1β could be observed following active infection with W. chondrophila. However a significant increase in IL-1β expression was also observed following the exposure of cells to UV-killed organisms, indicating the stimulation of multiple innate recognition pathways.

Conclusions/Significance

W. chondrophila infects and grows in the ruminant trophoblast AH-1 cell line exhibiting a complete chlamydial replicative cycle. Infection of the trophoblasts resulted in the expression of pro-inflammatory cytokines in a dose-dependent manner similar to that observed with C. abortus in previous studies, suggesting similarities in the pathogenesis of infection between the two organisms.  相似文献   

12.
Discovery of the T-helper (Th) 17 cell lineage and functions in immune responses of mouse and man prompted us to investigate the role of transforming growth factor-beta (TGF-β) and interleukin (IL)-17 in innate resistance to murine schistosomiasis mansoni. Schistosoma mansoni-infected BALB/c and C57BL/6 mice were administered with recombinant TGF-β or mouse monoclonal antibody to TGF-β to evaluate the impact of this cytokine on host immune responses against lung-stage schistosomula, and subsequent effects on adult worm parameters. Developing schistosomula elicited increase in peripheral blood mononuclear cells (PBMC) mRNA expression and/or plasma levels of IL-4, IL-17, and interferon-gamma (IFN-γ), cytokines known to antagonize each other, resulting in impaired Th1/Th2, and Th17 immune responses and parasite evasion. Mice treated with TGF-β showed elevated PBMC mRNA expression of IL-6, IL-17, TGF-β, and TNF-α mRNA and increased IL-23 and IL-17 or TGF-β plasma levels, associated with significantly (< 0.02–<0.0001) lower S. mansoni adult worm burden compared to controls in both mouse strains, thus suggesting that TGF-β led to heightened Th17 responses that mediated resistance to the infection. Mice treated with antibody to TGF-β showed increase in PBMC mRNA expression and plasma levels of IL-4, IL-12p70, and IFN-γ, and significantly (< 0.02 and <0.0001) reduced worm burden and liver worm egg counts than untreated mice, indicating that Th1/Th2 immune responses were potentiated, resulting in significant innate resistance to schistosomiasis. The implications of these observations for schistosome immune evasion and vaccination were discussed.  相似文献   

13.
Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence for the ability of C. pneumoniae to evade cellular defense and to persist in human macrophages.  相似文献   

14.
15.
Acinetobacter baumannii is an important cause of both community-associated and nosocomial pneumonia, which have become increasingly difficult to treat because of the rapid development of resistance to multiple antibiotics. Despite its clinical importance, the pathogenesis of and host defense against respiratory A. baumannii infection remains largely unknown. To examine host factors that could contribute to the defense, we compared the susceptibilities of A/J and C57BL/6 mice to intranasal (i.n.) inoculation with A. baumannii. We found that A/J mice were significantly more susceptible to infection with higher mortality (P < 0.05) and tissue bacterial burdens (P < 0.01) as well as greater histopathology in the lung and spleen than C57BL/6 mice. More importantly, the high susceptibility of A/J mice was associated with a reduced local proinflammatory cytokine/chemokine (particularly IL-1β, MIP-2 and TNF-α) responses and a significant delay and reduction in the early influx of neutrophils in the lung (P < 0.05). Intranasal administration of neutrophil-inducing chemokine MIP-2 to A/J mice enhanced pulmonary neutrophil influx and partially restored host resistance to A. baumannii to a level comparable to the more resistant C57BL/6 mice. Our results imply that the early recruitment of neutrophils into the lung is critical for initiating an efficient host defense against respiratory A. baumannii infection.  相似文献   

16.
A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS) was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) in human dendritic cells (DCs). Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK) suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP) analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo. The addition of Tumor Necrosis Factor Associated Factors (TRAF) TRAF 2, 3 and TRAF6 blocking peptides to vaccine inoculated DCs was shown to inhibit IDO1 biosynthesis. This experimental outcome suggests vaccine activation of the TNFR super-family receptor pathway leads to upregulation of IDO1 biosynthesis in CTB-INS inoculated dendritic cells. Together, our experimental data suggest the CTB-INS vaccine uses a TNFR-dependent signaling pathway of the non-canonical NF-κB signaling pathway resulting in suppression of dendritic cell mediated type 1 diabetes autoimmunity.  相似文献   

17.
This review summarizes the recently published data on the molecular mechanisms of Chlamydiae-host cell interaction, first of all, on chlamydial effector proteins. Such proteins, along with type III transport system proteins, which transfer many effector proteins into the host cytoplasm, are attractive targets for drug therapy of chlamydial infections. The majority of the data concerns two species, Chlamydia trachomatis and Chlamydophila pneumoniae. The C. trachomatis protein TARP, which is presynthesized in elementary bodies, plays an essential role in the initial stages of infection. The pathogen proteins that are involved in the next stage, which is the intracellular inclusion traffic to the centrosome, are C. trachomatis CT229 and C. pneumoniae Cpn0585, which interact with cell Rab GTPases. In C. trachomatis, IncA plays a key role in the fusion of chlamydial inclusions, CT847 modulates the life cycle of the host cell, and LDA3 is essential for the acquisition of nutrients. The protease CPAF and the inclusion membrane proteins IncG and CADD are involved in suppressing apoptosis of infected cells. The proteases CPAF and CT441 and the deubiquitinating protein ChlaDub1 help the pathogen to evade the immune response.  相似文献   

18.
We previously identified hypothetical protein Cpn1027 as a novel inclusion membrane protein that is unique to Chlamydia pneumoniae. In the current study, using a yeast-two hybrid screen assay, we identified host cell cytoplasmic activation/proliferation-associated protein 2 (Caprin2) as an interacting partner of Cpn1027. The interaction was confirmed and mapped to the C-termini of both Cpn1027 and Caprin2 using co-immunoprecipitation and GST pull-down assays. A RFP-Caprin2 fusion protein was recruited to the chlamydial inclusion and so was the endogenous GSK3β, a critical component of the β-catenin destruction complex in the Wnt signaling pathway. Cpn1027 also co-precipitated GSK3β. Caprin2 is a key regulator of the Wnt signaling pathway by promoting the recruitment of the β-catenin destruction complex to the cytoplasmic membrane in the presence of Wnt signaling while GSK3β is required for priming β-catenin for degradation in the absence of Wnt signaling. The Cpn1027 interactions with Caprin2 and GSK3β may allow C. pneumoniae to actively sequester the β-catenin destruction complex so that β-catenin is maintained even in the absence of extracellular Wnt activation signals. The maintained β-catenin can trans-activate Wnt target genes including Bcl-2, which may contribute to the chlamydial antiapoptotic activity. We found that the C. pneumoniae-infected cells were more resistant to apoptosis induction and the anti-apoptotic activity was dependent on β-catenin. Thus, the current study suggests that the chlamydial inclusion protein Cpn1027 may be able to manipulate host Wnt signaling pathway for enhancing the chlamydial anti-apoptotic activity.  相似文献   

19.
20.

Objectives

Indoleamine 2,3-dioxygenase-1 (IDO1) is an immune-modulatory enzyme that catalyzes the degradation of tryptophan (Trp) to kynurenine (Kyn) and is strongly induced by interferon (IFN)-γ. We previously reported highly increased levels of IFN-γ and corresponding IDO activity in patients with hemophagocytic lymphohistiocytosis (HLH), a hyper-inflammatory syndrome. On the other hand, IFN-γ and IDO were low in patients with systemic juvenile idiopathic arthritis (sJIA), an autoinflammatory syndrome. As HLH can occur as a complication of sJIA, the opposing levels of both IFN-γ and IDO are remarkable. In animal models for sJIA and HLH, the role of IFN-γ differs from being protective to pathogenic. In this study, we aimed to unravel the role of IDO1 in the pathogenesis of sJIA and HLH.

Methods

Wild-type and IDO1-knockout (IDO1-KO) mice were used in 3 models of sJIA or HLH: complete Freund’s adjuvant (CFA)-injected mice developed an sJIA-like syndrome and secondary HLH (sHLH) was evoked by either repeated injection of unmethylated CpG oligonucleotide or by primary infection with mouse cytomegalovirus (MCMV). An anti-CD3-induced cytokine release syndrome was used as a non-sJIA/HLH control model.

Results

No differences were found in clinical, laboratory and hematological features of sJIA/HLH between wild-type and IDO1-KO mice. As IDO modulates the immune response via induction of regulatory T cells and inhibition of T cell proliferation, we investigated both features in a T cell-triggered cytokine release syndrome. Again, no differences were observed in serum cytokine levels, percentages of regulatory T cells, nor of proliferating or apoptotic thymocytes and lymph node cells.

Conclusions

Our data demonstrate that IDO1 deficiency does not affect inflammation in sJIA, sHLH and a T cell-triggered cytokine release model. We hypothesize that other tryptophan-catabolizing enzymes like IDO2 and tryptophan 2,3-dioxygenase (TDO) might compensate for the lack of IDO1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号