首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Vitamin B12 deficiency induced in the fruit bat by a combination of dietary deprivation and exposure to nitrous oxide (N2O) is accompanied by profound neurological impairment, thus providing an experimental model for the study of vitamin B12 neuropathy. 2. Electron microscopy of the spinal cord of vitamin B12 deficient bats shows marked changes in the myelin of the posterior columns in the form of distension, separation and vacuolation of myelin lamellae similar to the changes described in the dietary induced B12 deficient monkey model. 3. No equivalent change occurred in bats exposed to N2O and supplemented with vitamin B12.  相似文献   

2.
3.
4.
5.
Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B(12) are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA) levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B(12) deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B(12) deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B(12) lowers plasma and placental DHA levels (p<0.05) and reduces global DNA methylation levels (p<0.05). When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.  相似文献   

6.
The fruit bat provides a unique small mammal model of the neurological changes associated with cobalamin deficiency. Work with this model has shown that methionine moderates the development of the neurological impairment. This action does not appear to be via the methyl donor S-adenosylmethionine, but its role in the provision of formate is not excluded. Furthermore, methylation reactions in the nervous system are not impaired in severe cobalamin deficiency, despite low levels of methionine synthetase activity. The accumulation of physiologically inactive analogues of cobalamin also do not appear to be aetiologically important in the neuropathy. Brain folates are minimally affected by severe cobalamin deficiency, although liver folates decrease significantly. Deranged GABA function in the brain may play a role in the symptomatology of cobalamin deficiency. There is some evidence for the hypothesis that deranged fatty acid metabolism in neural tissue contributes to altered membrane structure and hence function. Changes in the properties of membrane proteins may play a contributory role. The biochemical basis of the neuropathy has still to be fully elucidated.  相似文献   

7.
Lipid profile of the spinal cord myelin was studied in normal and vitamin B12 deficient chicks. The significant findings were a reduction in the total galactolipids and an increase in the total phospholipids of myelin in vitamin B12 deficiency. The altered molar ratios of these lipids suggest a relative immaturity of the myelin in this condition. These changes may initiate the degenerative changes in the central nervous system in vitamin B12 deficiency.Vitamin B12 is essential for normal functioning of both the hemopoietic and the nervous system. Sub-acute combined degeneration of the spinal cord is seen both in association with pernicious anemia and in megaloblastic anemia of dietary origin (1,2). Though many biochemical postulates (3, 4) have been advanced to explain the neurological changes, the role of vitamin B12 in maintaining the integrity of myelin is still obscure. So far only in two animal species the monkey (5) and the chick (6) has myelin degeneration been reported in vitamin B12 deficiency. However, in neither of these reports, have changes in the composition of myelin been described. The results of a study in chicks wherein the effects of vitamin B12 on the lipid profile of myelin were investigated are reported here.  相似文献   

8.
5-Methylcytosine synthesis in DNA involves the transfer of methyl groups from S-adenosyl-methionine to the 5'-position of cytosine through the action of DNA (cytosine-5)-methyltransferase. The rate of this reaction has been found to be enhanced by cobalt ions. We therefore analyzed the influence of vitamin B12 and related compounds containing cobalt on DNA methylation. Vitamin B12, methylcobalamin, and coenzyme B12 were found to enhance significantly the de novo DNA methylation in the presence of S-adenosylmethionine for concentrations up to 1 microM, but at higher concentrations these compounds were found to inhibit DNA methylation. Methylcobalamin behaves as a competitive inhibitor of the enzymatic methylation reaction (Ki = 15 microM), the Km for S-adenosylmethionine being 8 microM. In addition, the use of radioactive methylcobalamin shows that it can be used as a methyl donor in the de novo and maintenance DNA methylation reactions. Thus, two DNA methylation pathways could exist: one involving methylation from S-adenosylmethionine and a second one involving methylation from methylcobalamin.  相似文献   

9.
The effect of vitamin B12, its analogs and donors of methyl groups on the coupling of methylation and carnitine accumulation in rats was studied. Biological active forms of vitamin B12 (methylcobalamine, cyanocobalamine, hydroxycobalamine) are shown to stimulate the carnitine synthesis in liver. The donor of methyl groups S-methylmethionine, also has a positive effect. Factor B does not influence the carnitine level. The stimulating effect of vitamin B12 and donors in methyl groups on the carnitine synthesis seems to result from activation of methylation.  相似文献   

10.
Folic acid fortification: why not vitamin B12 also?   总被引:1,自引:0,他引:1  
Folic acid fortification of cereal grains was introduced in many countries to prevent neural tube defect occurrence. The metabolism of folic acid and vitamin B12 intersect during the transfer of the methyl group from 5-methyltetrahydrofolate to homocysteine catalyzed by B12-dependent methioine synthase. Regeneration of tetrahydrofolate via this reaction makes it available for synthesis of nucleotide precursors. Thus either folate or vitamin B12 deficiency can result in impaired cell division and anemia. Exposure to extra folic acid through fortification may be detrimental to those with vitamin B12 deficiency. Among participants of National Health And Nutrition Examination Survey with low vitamin B12 status, high serum folate (>59 nmol/L) was associated with higher prevalence of anemia and cognitive impairment when compared with normal serum folate. We also observed an increase in the plasma concentrations of total homocysteine and methylmalonic acid (MMA), two functional indicators of vitamin B12 status, with increase in plasma folate under low vitamin B12 status. These data strongly imply that high plasma folate is associated with the exacerbation of both the biochemical and clinical status of vitamin B12 deficiency. Hence any food fortification policy that includes folic acid should also include vitamin B12.  相似文献   

11.
To produce a severe choline-methionine deficiency, a synthetic L-amino acid diet, free of choline, methionine, vitamin B12, and folic acid and supplemented with guanidoacetic acid, a methyl group acceptor, was fed to female rats for 2 weeks. The in vitro activity of liver microsomal phosphatidylethanolamine methyltransferase was stimulated twofold when compared with basal diet controls. The activity of choline phosphotransferase was depressed by 86%; thus, the contribution of the methyltransferase in the overall synthesis of phosphatidylcholine apparently increased. However, measurement of the in vivo methylation of phosphatidylethanolamine by incorporation of [1,2-14C]ethanolamine into phosphatidylcholine indicates that the methylation pathway is markedly depressed in methyl deficiency. Hepatic concentrations of the methyltransferase substrate, S-adenosylmethionine, and the inhibitory metabolite, S-adenosylhomocysteine, were significantly altered such that an unfavorable environment for methylation was present in the deficient animal. The ratio of substrate to inhibitor was depressed from 5.2:1 in the controls to 1.7:1 in the livers of methyl-depleted rats. Control of transmethylation in accordance with the availability of substrates, phosphatidylethanolamine, or S-adenosylmethionine, and the level of S-adenosylhomocysteine is discussed.  相似文献   

12.
To study the pathophysiology of the neuronal degeneration in vitamin B12 deficiency, we investigated the concentrations of the polyamines putrescine, spermidine, and spermine in brain regions and liver using high-performance liquid chromatography with fluorescence detection. Male Wistar rats were fed either a control or vitamin B12-deficient diet for 20 weeks. No remarkable behavioral changes were observed. Serum vitamin B12 and hepatic methionine concentrations were significantly lower and hepatic homocysteine was elevated in rats fed vitamin B12-deficient diet than in controls. Vitamin B12 deficiency was associated with decreased concentrations of spermidine, spermidine in liver and some regions of brain, although there were no observed abnormalities in behavior. These results suggest that vitamin B12 deficiency may play a role in neuronal degeneration through the disturbance of polyamine concentrations in rat brain.  相似文献   

13.
Role of S-Adenosylmethionine in Methionine Biosynthesis in Yeast   总被引:2,自引:1,他引:1       下载免费PDF全文
Extracts of Saccharomyces cerevisiae were used to develop a cell-free system capable of converting the beta-carbon of serine into the methyl group of methionine. No requirement for either S-adenosylmethionine or S-adenosylhomocysteine could be demonstrated for net methionine biosynthesis. Growth of the cells in B(12) did not affect the reaction. The mechanism for the methylation of homocysteine in yeast appears to be similar to the non-B(12) system in Escherichia coli.  相似文献   

14.
15.
The micronutrients folate and vitamin B12 are essential for the proper development of the central nervous system, and their deficiency during pregnancy has been associated with a wide range of disorders. They act as methyl donors in the one-carbon metabolism which critically influences epigenetic mechanisms. In order to depict further underlying mechanisms, we investigated the role of let-7 and miR-34, two microRNAs regulated by methylation, on a rat model of maternal deficiency. In several countries, public health policies recommend periconceptional supplementation with folic acid. However, the question about the duration and periodicity of supplementation remains. We therefore tested maternal supply (3 mg/kg/day) during the last third of gestation from embryonic days (E) 13 to 20. Methyl donor deficiency-related developmental disorders at E20, including cerebellar and interhemispheric suture defects and atrophy of selective cerebral layers, were associated with increased brain expression (by 2.5-fold) of let-7a and miR-34a, with subsequent downregulation of their regulatory targets such as Trim71 and Notch signaling partners, respectively. These processes could be reversed by siRNA strategy in differentiating neuroprogenitors lacking folate, with improvement of their morphological characteristics. While folic acid supplementation helped restoring the levels of let-7a and miR-34a and their downstream targets, it led to a reduction of structural and functional defects taking place during the perinatal period. Our data outline the potential role of let-7 and miR-34 and their related signaling pathways in the developmental defects following gestational methyl donor deficiency and support the likely usefulness of late folate supplementation in at risk women.  相似文献   

16.
Transgenic mice expressing mutant (P301L) tau develop paresis, neurofibrillary tangles and neuronal loss in spinal motor neurons beginning at 4 to 6 months of age. Astrocytes and oligodendrocytes acquire filamentous tau inclusions at later ages. Here we report pathology in the spinal white matter of these animals. Progressive white matter pathology, detected as early as 2 months of age, was most marked in lateral and anterior columns, with sparing of posterior columns until late in the disease. Early changes in Luxol fast blue/periodic acid Schiff (LFB/PAS) and toluidine blue stained sections were vacuolation of myelin followed by accumulation of myelin figures within previous axonal tubes and finally influx of PAS-positive macrophages. Myelin debris and vacuoles were found in macrophages. At the ultrastructural level, myelinated axons showed extensive vacuolation of myelin sheaths formed by splitting of myelin lamellae at the intra-period line, while axons were atrophic and contained densely packed neurofilaments. Other axons were lost completely, resulting in collapse and phagocytosis of myelin sheaths. Also present were spheroids derived from swollen axons with thin myelin sheaths containing neurofilaments, tau filaments and degenerating organelles. Many oligodendrocytes had membrane-bound cytoplasmic bodies composed of tightly stacked lamellae capped by dense material. The vacuolar myelopathy in this model to some extent resembles that reported in acquired immune deficiency syndrome and vitamin B12 deficiency. The progressive axonal pathology is most consistent with a dying-back process caused by abnormal accumulation of tau in upstream neurons, while vacuolar myelinopathy may be a secondary manifestation of neuroinflammation.  相似文献   

17.
Late-onset Alzheimer's disease seems to be a multi-factorial disease with both genetic and non-genetic, environmental, possible causes. Recently, epigenomics is achieving a major role in Alzheimer's research due to its involvement in different molecular pathways leading to neurodegeneration. Among the different epigenetic modifications, DNA methylation is one of the most relevant to the disease. We previously demonstrated that presenilin1 (PSEN1), a gene involved in amyloidogenesis, is modulated by DNA methylation in neuroblastoma cells and Alzheimer's mice in an experimental model of nutritionally altered one-carbon metabolism. This alteration, obtained by nutritional deficiency of B vitamins (folate, B12 and B6) hampered S-adenosylmethionine (SAM)-dependent methylation reactions. The aim of the present paper was to investigate the regulation of DNA methylation machinery in response to hypomethylating (B vitamin deficiency) and hypermethylating (SAM supplementation) alterations of the one-carbon metabolism. We found that DNA methylases (DNMT1, 3a and 3b) and a putative demethylase (MBD2) were differently modulated, in line with the previously observed changes of PSEN1 methylation pattern in the same experimental conditions.  相似文献   

18.
The major components of crude brain synaptosomes (synaptic membranes, mitochondria, and myelin) have been separated and analyzed by polyacrylamide gel electrophoresis for the presence of proteins that serve as substrates for protein carboxyl methyltransferase. Of the three fractions, synaptic membranes contain the largest number of individual methyl acceptors (at least seven), while mitochondria contain no well-defined methyl acceptors. Undisrupted myelin contains a single major methyl acceptor with a very low apparent molecular weight. The patterns of protein methylation in synaptic membranes prepared from cerebral cortex, hippocampus, striatum, thalamus, and tectum showed marked differences; however, these differences could largely be explained by differential degrees of myelin contamination in synaptic membranes from the different regions. The effect of trypsin pretreatment on the carboxyl methylation of intact and lysed synaptosomes was studied to estimate the sidedness of the major methylation sites on synaptic membranes. One of the methyl acceptors (Mr 48K) appears to be facing the intracellular surface of the synaptosome, but most sites appear to be outward facing.  相似文献   

19.
Vitamin B12-deficiency may induce specific symptoms as neurological alterations and unspecific symptoms such as anaemia and growth retardation. In this study, maternal vitamin B12 deficiency from end of gestation to weaning was evaluated in mouse dams, which was provoked by feeding a vitamin B12-deficient diet. The animals were divided into two groups (control and deficient). The control group received the vitamin B12-deficient diet supplemented with commercial vitamin B12. Compared to the control, the vitamin B12-deficient dams and their offspring showed a significant decrease of body weight (by 20 and 39%, respectively), serum vitamin B12 concentration (by 61 and 67%, respectively), haematological values as haematocrit (25 and 26%, respectively), and IgA producer cells (by 36 and 54%, respectively). In both, vitamin B12-deficient mouse dams and their offspring, histological alterations of small intestine were observed, whereas growth retardation occurred in the offspring only. This experimental murine model allows assessing the incidence of maternal cobalamin deficiency in offspring and would be useful for evaluating novel adjuncts such as functional foods to prevent vitamin B12 deficiency.  相似文献   

20.
The newer hematinics are merely refinements of preexisting forms of treatment, but they have aided particularly in a better understanding of the deficiency states. The intrinsic factor of Castle has not been isolated from the gastric juice, and the interrelationships of this substance with the extrinsic factor (vitamin B(12)) and folic acid have not been defined at this time. Vitamin B(12) appears to be the active principle of refined liver extract and alone is probably adequate treatment for pernicious anemia. The other varieties of megaloblastic anemia may result from deficiency of vitamin B(12) or folic acid, although generally treatment with the latter brings about complete and lasting remission. The use of multihematinics and multivitamin preparations containing folic acid is to be condemned, particularly because of the possibility of their obscuring anemia and thwarting diagnosis of pernicious anemia until neurologic complications have taken place. Saccharated oxide of iron is a relatively safe preparation for intravenous administration, but the indications for its use are few. Because the body has no mechanism for iron excretion, only the amount of iron necessary to make up a deficiency should be given, although there is no definite evidence that hemochromatosis results from overdosage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号