首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The set of blasticidin S (BS) and blasticidin S deaminase (BSD) is a widely used selectable marker for gene transfer experiments. BSD is a member of the cytidine deaminase (CDA) family; it is a zinc-dependent enzyme with three cysteines and one water molecule as zinc ligands. The crystal structures of BSD were determined in six states (i.e. native, substrate-bound, product-bound, cacodylate-bound, substrate-bound E56Q mutant, and R90K mutant). In the structures, the zinc position and coordination structures vary. The substrate-bound structure shows a large positional and geometrical shift of zinc with a double-headed electron density of the substrate that seems to be assigned to the amino and hydroxyl groups of the substrate and product, respectively. In this intermediate-like structure, the steric hindrance of the hydroxyl group pushes the zinc into the triangular plane consisting of three cysteines with a positional shift of approximately 0.6 A, and the fifth ligand water approaches the opposite direction of the substrate with a shift of 0.4 A. Accordingly, the zinc coordination is changed from tetrahedral to trigonal bipyramidal, and its coordination distance is extended between zinc and its intermediate. The shift of zinc and the recruited water is also observed in the structure of the inactivated E56Q mutant. This novel observation is different in two-cysteine cytidine deaminase Escherichia coli CDA and might be essential for the reaction mechanism in BSD, since it is useful for the easy release of the product by charge compensation and for the structural change of the substrate.  相似文献   

2.
The diterpenoid furanolactone (columbin) from Aristolochia albida inhibited growth of culture forms of Trypanosoma brucei. In vitro analysis of the compound at 5-250 microg/ml showed complete lysis of the parasites within 10-20 minutes post incubation. At 50 microg/ml, columbin killed about 50% of the parasites which initially appeared swollen under phase contrast microscopy. Also the total amount of cholesterol diminished dose-dependently in the presence of 10-100 microg/ml of columbin after a 3-day incubation period. In vivo analysis of the compound in T. brucei-infected mice revealed that 25 mg/kg administered for 3 consecutive days, completely cleared the parasites from the peripheral circulation. However, columbin could not clear parasites in the cerebrospinal fluid.  相似文献   

3.
The GRIP domain, found in a family of coiled-coil peripheral membrane Golgi proteins, is a specific targeting sequence for the trans-Golgi network of animal cells. In this study we show that a coiled-coil protein with a GRIP domain occurs in the primitive eukaryote, Trypanosoma brucei, and that reporter proteins containing this domain can be used as a marker for the poorly characterized trans Golgi/trans-Golgi network of trypanosomatid parasites. The T. brucei GRIP domain, when fused to the carboxyl terminus of the green fluorescent protein (GFP-TbGRIP), was efficiently localized to the Golgi apparatus of transfected COS cells. Overexpression of GFP-TbGRIP in COS cells displaced the endogenous GRIP protein, GCC1p, from the Golgi apparatus indicating that the trypanosomatid and mammalian GRIP sequences interact with similar membrane determinants. GFP fusion proteins containing either the T. brucei GRIP domain or the human p230 GRIP (p230GRIP) domain were also expressed in the trypanosomatid parasite, Leishmania mexicana, and localized by fluorescence and immuno-electron microscopy to the trans face of the single Golgi apparatus and a short tubule that extended from the Golgi apparatus. Binding of GFP-p230GRIP to Golgi membranes in L. mexicana was abrogated by mutation of a critical tyrosine residue in the p230 GRIP domain. The levels of GFP-GRIP fusion proteins were dramatically reduced in stationary-phase L. mexicana promastigotes, suggesting that specific Golgi trafficking steps may be down-regulated as the promastigotes cease dividing. This study provides a protein marker for the trans-Golgi network of trypanosomatid parasites and suggests that the GRIP domain binds to a membrane component that has been highly conserved in eukaryotic evolution.  相似文献   

4.
A method for Agrobacterium-mediated co-transformation of rice (Oryza sativa L.) was developed using rice-derived selection markers. Two T-DNAs were efficiently introduced into separate loci using selectable marker gene cassettes consisting of the mutated acetolactate synthase gene (mALS) under the control of the callus-specific promoter (CSP) (CSP:mALS) and the ferredoxin nitrite reductase gene (NiR) under the control of its own promoter (NiR P:NiR). The CSP:mALS gene cassette confers sulfonylurea herbicide resistance to transgenic rice callus. The NiR P:NiR construct complements NiR-deficient mutant cultivars such as ‘Koshihikari’, which are defective in the regulation of nitrogen metabolism. In the present study, the CaMV35S:GUS and CaMV35S:GFP gene cassettes were co-introduced into the ‘Koshihikari’ genome using our system. Approximately 5–10 independent transgenic lines expressing both the GUS and GFP reporters were obtained from 100 Agrobacterium co-inoculated calli. Furthermore, transgenic ‘Koshihikari’ rice lines with reduced content of two major seed allergen proteins, the 33 and 14–16?kDa allergens, were generated by this co-transformation system. The present results indicate that the generation of selectable antibiotic resistance marker gene-free transgenic rice is possible using our rice-derived selection marker co-transformation system. Key message An improved rice transformation method was developed based on Agrobacterium-mediated co-transformation using two rice genome-derived selectable marker gene cassettes.  相似文献   

5.
Blasticidin S is a microbial antibiotic that inhibits protein synthesis in both prokaryotes and eukaryotes. The blasticidin S-resistance gene (bsr), isolated from Bacillus cereus K55-S1 strain, was inserted into pSV2 plasmid vector and introduced into cultured mammalian cells by transfection. The bsr gene was integrated into the genome and conferred blasticidin S resistance on HeLa cells. The transfection frequency of the bsr gene was as high as that of the aminoglycoside phosphotransferase gene, the so-called neo gene, which is a representative selectable marker for mammalian cells. Transfectants in which several copies of bsr had been integrated into the genome were highly resistant to blasticidin S. Furthermore, blasticidin S killed the cells more rapidly than G418, which is conventionally used as a selective drug for the neo gene. Thus bsr is concluded to be useful as a drug-resistance marker for mammalian cells.  相似文献   

6.
Plasmid-free Chlamydia trachomatis serovar L2 organisms have been transformed with chlamydial plasmid-based shuttle vectors pGFP::SW2 and pBRCT using β-lactamase as a selectable marker. However, the recommendation of amoxicillin, a β-lactam antibiotics, as one of the choices for treating pregnant women with cervicitis due to C. trachomatis infection has made the existing shuttle vectors unsuitable for transforming sexually transmitted infection (STI)-causing serovars of C. trachomatis. Thus, in the current study, we modified the pGFP::SW2 plasmid by fusing a blasticidin S deaminase gene to the GFP gene to establish blasticidin resistance as a selectable marker and replacing the β-lactamase gene with the Sh ble gene to eliminate the penicillin resistance. The new vector termed pGFPBSD/Z::SW2 was used for transforming plasmid-free C. trachomatis serovar D organisms. Using blasticidin for selection, stable transformants were obtained. The GFP-BSD fusion protein was detected in cultures infected with the pGFPBSD/Z::SW2-trasnformed serovar D organisms. The transformation restored the plasmid property to the plasmid-free serovar D organisms. Thus, we have successfully modified the pGFP::SW2 transformation system for studying the biology and pathogenesis of other STI-causing serovars of C. trachomatis.  相似文献   

7.
Aspergillus terreus produces a unique enzyme, blasticidin S deaminase, which catalyzes the deamination of blasticidin S (BS), and in consequence confers high resistance to the antibiotic. A cDNA clone derived from the structural gene for BS deaminase (BSD) was isolated by transforming Escherichia coli with an Aspergillus cDNA expression library and directly selecting for the ability to grow in the presence of the antibiotic. The complete nucleotide sequene of BSD was determined and proved to contain an open reading frame of 393 bp, encoding a polypeptide of 130 amino acids. Comparison of its nulceotide sequence with that of bsr, the BS deaminase gene isolated from Bacillus cereus, indicated no homology and a large difference in codon usage. The activity of BSD expressed in E. coli was easily quantified by an assay based on spectrophotometric recording. The BSD gene was placed in a shuttle vector for Schizosaccharomyces pombe, downstream of the SV40 early region promoter, and this allowed direct selection with BS at high frequency, following transformation into the yeast. The BSD gene was also employed as a selectable marker for Pyricularia oryzae, which could not be transformed to BS resistance by bsr. These results promise that the BSD gene will be useful as a new dominant selectable marker for eukaryotes.  相似文献   

8.
Aspergillus terreus produces a unique enzyme, blasticidin S deaminase, which catalyzes the deamination of blasticidin S (BS), and in consequence confers high resistance to the antibiotic. A cDNA clone derived from the structural gene for BS deaminase (BSD) was isolated by transforming Escherichia coli with an Aspergillus cDNA expression library and directly selecting for the ability to grow in the presence of the antibiotic. The complete nucleotide sequene of BSD was determined and proved to contain an open reading frame of 393 bp, encoding a polypeptide of 130 amino acids. Comparison of its nulceotide sequence with that of bsr, the BS deaminase gene isolated from Bacillus cereus, indicated no homology and a large difference in codon usage. The activity of BSD expressed in E. coli was easily quantified by an assay based on spectrophotometric recording. The BSD gene was placed in a shuttle vector for Schizosaccharomyces pombe, downstream of the SV40 early region promoter, and this allowed direct selection with BS at high frequency, following transformation into the yeast. The BSD gene was also employed as a selectable marker for Pyricularia oryzae, which could not be transformed to BS resistance by bsr. These results promise that the BSD gene will be useful as a new dominant selectable marker for eukaryotes.  相似文献   

9.

Background  

The blasticidin S resistance gene (bsr) is a selectable marker used for gene transfer experiments. The bsr gene encodes for blasticidin S (BS) deaminase, which has a specific activity upon BS. Therefore, its expression is supposed to be harmless in cells. The work reported on herein consisted of experiments to verify a possible toxicity of bsr on mammalian cells, which include several cell lines and primary cultures.  相似文献   

10.
Retroviral vectors are commonly used in ex vivo gene therapy protocols. The structure of vectors basically consists of one gene of interest and a selectable marker gene. Fast selection without damaging cells is a critical step for ex vivo gene therapy protocols. Blasticidin S deaminase isolated from Bacillus cereus has a neutralizing action on the highly toxic antibiotic blasticidin S (BS). A commercially available gene coding for blasticidin S deaminase (bsr) when used to construct retroviral vectors, LBSN and LNSB, provided very low levels of BS deaminase activity, precluding their routine use in gene transfer experiments. However, with the introduction of specific mutations into the bsr gene based on the Kozak consensus sequences and deletion of a 5' untranslated sequence to generate bsrm, we were able to construct a retroviral vector encoding resistance to high doses of BS (at least 16-fold above the usual lethal dose in NIH3T3 cells), showing that bsrm/BS may provide a useful system for selection of transduced mammalian cells.  相似文献   

11.
M G Lee  L H van der Ploeg 《Gene》1991,105(2):255-257
The hygromycin B (Hy) phosphotransferase-encoding gene (hph), was tested as a selectable marker in the protozoan, Trypanosoma brucei. The hph gene was placed under the control of the promoter of a procyclic acidic repetitive protein-encoding gene, and was integrated by homologous recombination into an intergenic region of the alpha beta-tubulin-encoding gene tandem array of T. brucei. In contrast to many other selectable markers tested, spontaneous Hy resistance was not observed, making Hy a second useful marker for transformation of this protozoan.  相似文献   

12.
Adeno-associated virus (AAV) vectors have a limited capacity for packaging DNA. To insert both a therapeutic gene and a selectable marker gene in the same AAV vector efficiently, we developed a novel dicistronic AAV vector containing a 230 base pairs (bp) internal ribosome entry site (IRES) element derived from hepatitis C virus (HCV) genome and a 420 bp blasticidin S-resistance gene (bsr) as a small selectable marker in the second cistron. The 650 bp HCV IRES-bsr construct was placed downstream of the 3′ end of the luciferase gene (Luc) under the control of the human cytomegalovirus (CMV) promoter. This dicistronic gene conferred blasticidin S-resistance to 293 cells besides luciferase activity, when examined not only by transfection but also by transduction using AAV vectors. The dicistronic AAV vector harbouring HCV IRES-bsr is capable of expressing a therapeutic gene of up to 3.6 kilobases (kb) (including promoter/enhancer elements) as well as a selectable marker gene. If a selectable marker gene is not necessary, this vector is able to incorporate two different kinds of therapeutic genes more easily than that containing EMCV IRES. The dicistronic AAV vector described here is useful for expressing many kinds of cDNA besides a selectable marker.  相似文献   

13.
Blasticidin S (BS) is an aminoacylnucleoside antibiotic used for the control of rice blast disease. To establish a new cereal transformation system, we constructed a visual marker gene designated gfbsd, encoding an enhanced green fluorescent protein (EGFP) fused to the N-terminus of BS deaminase (BSD). It was cloned into a monocot expression vector and introduced into rice (Oryza sativa L. cv. Nipponbare) calluses by microprojectile bombardment. Three to five weeks after the bombardment, multicellular clusters emitting bright-green EGFP fluorescence were obtained with 10 microg/ml BS, which is not sufficient to completely inhibit the growth of non-transformed tissues. Fluorescent sectors (approximately 2mm in diameter) excised from the calluses regenerated into transgenic plantlets (approximately 10 cm in height) as early as 51 (average 77+/-11) days after the bombardment. The visual antibiotic selection was more efficient and required less time than the bialaphos selection with bar. In addition, the small size (1.1 kb) of gfbsd is preferable for construction of transformation vectors. This new marker gene will make a significant contribution in molecular genetic studies of rice plants.  相似文献   

14.
Názer E  Sánchez DO 《PloS one》2011,6(8):e24184
We have recently shown in T. cruzi that a group of RNA Binding Proteins (RBPs), involved in mRNA metabolism, are accumulated into the nucleolus in response to Actinomycin D (ActD) treatment. In this work, we have extended our analysis to other members of the trypanosomatid lineage. In agreement with our previous study, the mechanism seems to be conserved in L. mexicana, since both endogenous RBPs and a transgenic RBP were relocalized to the nucleolus in parasites exposed to ActD. In contrast, in T. brucei, neither endogenous RBPs (TbRRM1 and TbPABP2) nor a transgenic RBP from T. cruzi were accumulated into the nucleolus under such treatment. Interestingly, when a transgenic TbRRM1 was expressed in T. cruzi and the parasites exposed to ActD, TbRRM1 relocated to the nucleolus, suggesting that it contains the necessary sequence elements to be targeted to the nucleolus. Together, both experiments demonstrate that the mechanism behind nucleolar localization of RBPs, which is present in T. cruzi and L. mexicana, is not functional in T. brucei, suggesting that it has been lost or retained differentially during the evolution of the trypanosomatid lineage.  相似文献   

15.
The dose dependent antiproliferative effect of an alkaloidal substance extracted from the sponge Amphimedon viridis was tested on Leishmania mexicana promastigotes. Sponges were collected in Isla Larga, Venezuela (10 degrees 20' 20" - 10 degrees 24" N, 64 degrees 19' - 64 degrees 22' W), cut and dipped in methanol for vacum filtering extraction every 24 hr. The aqueous extract was separated by chromatography over silica gel. The parasites were from the Venezuelan NR strain. Their growth rate was reduced by 50 % with a dose of 10 microg/ml in 48 hr, whilst concentrations of 30 and 40 microg/ml induce leishmanicidal action after 110 and 20 min, respectively. Lysis is preceded by an immediate increase in cellular volume associated with progressive damage of cellular content and the destruction of organelles. These findings suggest that one important factor associated with the antiproliferative effect of this alkaloidal substance on L. mexicana promastigotes is the loss of the plasma membrane selective permeability.  相似文献   

16.
The presence of resistant selectable marker genes and other added DNAs such as the vector backbone sequence in transgenic plant might be an unpredictable hazard to the ecosystem as well as to human health, which have affected the safe assessment of transgenic plants seriously. Using minimal gene expression cassette (containing the promoter, coding region, and terminator) without vector backbone sequence for particle bombardment is the new trend of plant genetic transformation. In the present paper, we co-transformed the selectable marker bar gene cassette and non-selected cecropinB gene cassette into rice (Oryza sativa L.) by particle bombardment, then eliminated the selectable marker bar gene in R1 generation applying the hereditary segregation strategy and attained two safe transgenic plants only harboring cecropinB gene cassettes without any superfluous DNA. This is the fist report indicating that the combination of minimal gene cassettes transformation with the co-transformation and segregation strategy can generate selectable marker-free transgenic plants, which will promote the advancement in plant genetic engineering greatly.  相似文献   

17.
lmcpb, a gene from Leishmania mexicana that encodes a major cysteine proteinase in the parasite, has been cloned and sequenced. LmCPb is related more to cysteine proteinases from Trypanosoma brucei and Trypanosoma cruzi than to a previously characterized cysteine proteinase, LmCPa, of L. mexicana. It contains a long C-terminal extension characteristic of similar enzymes of T. brucei and T. cruzi. The gene is multi-copy and tandemly arranged. lmcpb RNA levels are developmentally regulated with steady state levels being high in amastigotes, low in metacyclic promastigotes and undetectable in multiplicative promastigotes. This variation correlates with and may account for the stage-specific expression of LmCPb enzyme activity.  相似文献   

18.
Biosafety implications of selectable marker genes that are integrated into the transgenic plants are discussed. In the laboratory, selectable marker genes are used at two stages to distinguish transformed cells out of a large population of nontransformed cells: 1) initial assembly of gene cassettes is generally done in E. coli on easily manipulatable plasmid vectors that contain the selectable marker genes which often code for antibiotic inactivating enzymes, and 2) Then the gene cassettes are inserted into the plant genome by various transformation methods. For selection of transformed plant cells, antibiotic and herbicide resistance genes are widely used. Consequently, transgenic plants can end up with DNA sequences of selectable markers that are functional in E. coli and plants. The potential for horizontal gene transfer of selectable markers from transgenic plants to other organisms both in the environment and in the intestine of humans and animals is evaluated. Mechanisms and consequences of the transfer of marker genes from plants to other organisms is examined. Strategies to avoid marker genes in plants are discussed. It is possible to avoid the use of controversial selectable markers in the construction of transgenic plants.  相似文献   

19.
Genetic manipulation is an essential technique to analyze gene function; however, limited methods are available for Babesia bovis, a causative pathogen of the globally important cattle disease, bovine babesiosis. To date, two stable transfection systems have been developed for B. bovis, using selectable markers blasticidin-S deaminase (bsd) or human dihydrofolate reductase (hdhfr). In this work, we combine these two selectable markers in a sequential transfection system. Specifically, a parent transgenic B. bovis line which episomally expresses green fluorescent protein (GFP) and human dihydrofolate reductase (hDHFR), was transfected with a plasmid encoding a fusion protein consisting of red fluorescent protein (RFP) and blasticidin-S deaminase (BSD). Selection with WR99210 and blasticidin-S resulted in the emergence of parasites double positive for GFP and RFP. We then applied this method to complement gene function in a parasite line in which thioredoxin peroxidase-1 (Bbtpx-1) gene was knocked out using hDHFR as a selectable marker. A plasmid was constructed harboring both RFP-BSD and Bbtpx-1 expression cassettes, and transfected into a Bbtpx-1 knockout (KO) parasite. Transfectants were independently obtained by two transfection methods, episomal transfection and genome integration. Complementation of Bbtpx-1 resulted in full recovery of resistance to nitrosative stress, via the nitric oxide donor sodium nitroprusside, which was impaired in the Bbtpx-1 KO parasites. In conclusion, we developed a sequential transfection method in B. bovis and subsequently applied this technique in a gene complementation study. This method will enable broader genetic manipulation of Babesia toward enhancing our understanding of the biology of this parasite.  相似文献   

20.
Particle bombardment has been used for soybean transformation for more than 20 yr, but the integration and segregation of transgene inserts in the soybean genome have not been clearly documented. Over the past 5 yr, we processed several hundred transgenic events. In each experiment, the expression cassettes of the gene of interest (GOI) and hygromycin selectable marker gene (SMG) were co-bombarded into soybean at a 1:1 molecular ratio. More than 75% of hygromycin-resistant events also carried the GOI. Molecular analysis of transgenic plants revealed that most events carried multiple inserts of the GOI and the SMG. The GOI and the SMG were linked in selfed T1 and T2 progeny. Segregation analysis of progeny indicated that, in over 98% of the transgenic events, the multiple inserts of the GOI were integrated into the same genetic locus resulting in a 3:1 segregation ratio. Furthermore, the multiple inserts of the GOI are transmitted into succeeding generations, and no recombinants were found. These data indicate that in soybean plants, co-bombarded genes are preferentially integrated and stably segregated as a single genetic locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号