首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《菌物学报》2017,(5):611-617
为了解溶氧对赤霉素发酵过程影响以及相应工艺优化,采用不同溶氧条件下藤仓赤霉菌Gibberella fujikuroi分批发酵生产赤霉素的过程进行菌丝浓度、残糖浓度和GA3产物浓度检测,并微分运算得出比生长速率与比产物合成速率随发酵时间变化,分析了溶氧对比生长速率与比产物合成速率以及得率的影响,进而提出Gibberella fujikuroi发酵高产的溶氧控制策略:在发酵初始阶段(0–50h)控制溶氧30%左右,以维持较高的菌体生长速率;发酵中后期(50–184h),溶氧控制在15%,以获取菌丝持续较高的GA3合成速率能力。采用这一优化溶氧控制策略,发酵过程中最大菌丝浓度19.24g/L、最终赤霉素浓度2 180mg/L和平均比产物合成速率0.616mg/(g·h),比未优化前发酵分别提高了8.33%、13.25%和4.58%,表明所采取的分阶段溶氧控制策略对促进GA3生产有效。  相似文献   

2.
研究了金龟子绿僵菌IMI330189的液体发酵动力学。利用Sigmoid函数构建了该菌株液体发酵过程中的菌体生长和底物消耗的动力学模型,并运用Origin7.5软件拟合求解出各模型参数。结果表明,模型能够较好地拟合绿僵菌IMI330189液体发酵过程,其比生长速率在发酵第22.8h达到最大值,为0.084h-1;总糖比消耗速率在第9.6h达到最大值,为0.246h-1;总氮比消耗速率在第10.3h达到最大值,为0.007h-1;菌体对总糖的得率系数在39.8h达到最高,为0.861g/g。模型拟合和实验数据具有良好的适应性,基本反映了绿僵菌IMI330189液体发酵过程的动力学特征,为其液体发酵工艺的优化和发展奠定了基础。  相似文献   

3.
酵母菌发酵中菌体浓度的估算   总被引:1,自引:0,他引:1  
在微生物发酵过程中菌体浓度是众多调节控制工艺参数(如pH,溶解氧浓度,温度,搅拌功耗,通气流量,排气中氧浓度,排气中二氧化碳浓度,氧化还原电位,培养基浓度和配比等)中甚为重要的一个。由于发酵液成分复杂,有的还含有非细胞性固体使得测定菌体浓度一直难以解决。本文依据质量衡算和化学热力学原理,提出菌体生长动力学表达式用于估算菌体浓度。实验测定值和估算值之间能较好地吻合。  相似文献   

4.
发酵动力学教学释疑解难尝试   总被引:1,自引:0,他引:1  
在发酵动力学课程教学中,针对菌体生长速率与菌体比生长速率、菌体实际生长得率系数(Yx/s)与理论生长得率系数(Ygs)、产物实际得率系数(Yp/s)与理论得率系数(Yps)、补料分批发酵中比生长速率调控等常见知识难点进行了释疑解难尝试,收到了较好的课堂教学效果。  相似文献   

5.
NH4+浓度对黄色短杆菌XV0505发酵生产L-缬氨酸的影响   总被引:1,自引:0,他引:1  
以L-缬氨酸(L-Val)生产菌黄色短杆菌XV0505为供试菌株,以(NH4)2SO4为唯一添加N源,考察不同NH 4+浓度对发酵过程中菌体干质量、L-Val产量和葡萄糖消耗速率以及菌体内代谢流量的影响。研究表明:NH 4+浓度过高或不足都会影响发酵水平,降低L-Val的产量。合适的初始NH4+浓度为225 mmol/L,产酸期NH4+维持浓度为35 mmol/L时,有利菌体产酸。在此NH4+浓度下,在30 L发酵罐发酵60 h,发酵液中菌体生物量和L-Val质量浓度分别可达22.35和59.12 g/L。  相似文献   

6.
对不同葡萄糖浓度下光滑球拟酵母分批发酵生产丙酮酸的动力学模型分析发现, 葡萄糖浓度是影响光滑球拟酵母发酵生产丙酮酸过程功能的关键因素。在发酵初始阶段, 低浓度葡萄糖可维持较高的菌体比生长速率; 对数生长中前期, 葡萄糖快速进料使菌体浓度接近最大值, 并实现碳流从菌体生长转向丙酮酸积累; 对数生长后期葡萄糖浓度控制在33.4 g/L以维持高丙酮酸对葡萄糖产率系数 (0.71 g/g)。采用奇异控制的葡萄糖流加方式, 在7 L发酵罐上控制不同发酵阶段葡萄糖浓度处于最佳水平以强化光滑球拟酵母过程功能, 丙酮酸产量 (83.1 g/L)、产率 (0.621 g/g)、生产强度[1.00 g/(L·h)]与分批发酵对比, 分别提高了21.3%、21.6%和29.9%。  相似文献   

7.
利用碳限制恒化实验研究了黑曲霉生长和糖化酶生产之间的相关性,结果表明当比生长速率低于0.068 h–1时,菌体生长与产酶是相关的,当比生长速率大于0.068 h–1时,菌体生长与产酶不相关。根据恒化实验结果获得黑曲霉葡萄糖底物消耗的Monod动力学模型,并结合葡萄糖和氧消耗的Herbert-Pirt方程和产物形成的Luedeking-Piret方程构建黑曲霉产糖化酶的黑箱模型。应用该模型设计指数补料分批发酵实验控制菌体比生长速率在0.05 h–1,使糖化酶的得率最高达到0.127 g糖化酶/g葡萄糖,并成功地使用模型描述了黑曲霉产糖化酶的发酵过程。实验值和模拟值进行比较表现出很好的适用性,表明黑箱模型可以用于指导黑曲霉产糖化酶发酵过程的设计和优化。  相似文献   

8.
分析大肠杆菌K802(pLY—4)生产人r—干扰素的发酵过程后发现,采用丰富培养基(改良LB+M9),既适合于细菌生长,又适合于r—干扰索的表达。采用逐步升温、控制不同发酵阶段的pH及保持高的溶解氧浓度,可提高重组质粒的稳定性和细胞的生长速率,使r—干扰素的表达量达4.0 X 106IU/ml,表达水平约占菌体蛋白的55%。  相似文献   

9.
氮源NH4Cl浓度对粪产碱杆菌发酵生产热凝胶的影响   总被引:4,自引:0,他引:4  
研究了利用粪产碱杆菌(Alcaligenes faecalis)发酵生产热凝胶的发酵条件,氮源是菌体生长的限制性底物,单纯地提高初始底物(氮源)浓度并不一定能促进细菌的生长和产物的合成.在分批发酵过程中,底物消耗导致培养环境pH的改变也是影响细菌进一步生长和产物合成的重要因素.通过增加培养基中初始氯化铵的浓度并同时控制发酵过程的pH条件,得到了较高的菌体浓度,热凝胶的合成水平也得到了显提高.当培养基中NH4Cl浓度提高到3.6g/L时,菌体浓度达到7.2g/L,热凝胶合成的产量可达30.5g/L,比原来NH4Cl浓度为1.1g/L时提高了51.7%.提高菌体浓度意味着需要提高溶氧水平来满足细菌的生长和代谢.初始氮源NH4Cl浓度的增加虽然能使菌体浓度得到提高,但发酵过程对溶氧的需求也相应增加,需要提高搅拌转速和通风以增加供氧水平.但高搅拌速率产生的高剪切力对热凝胶的凝胶性能将产生破坏作用,因此在发酵过程中需要综合考虑细菌培养密度对合成热凝胶产量和质量的影响.  相似文献   

10.
研究了利用粪产碱杆菌 (Alcaligenesfaecalis)发酵生产热凝胶的发酵条件 ,氮源是菌体生长的限制性底物 ,单纯地提高初始底物 (氮源 )浓度并不一定能促进细菌的生长和产物的合成。在分批发酵过程中 ,底物消耗导致培养环境pH的改变也是影响细菌进一步生长和产物合成的重要因素。通过增加培养基中初始氯化铵的浓度并同时控制发酵过程的pH条件 ,得到了较高的菌体浓度 ,热凝胶的合成水平也得到了显著提高。当培养基中NH4Cl浓度提高到3.6g/L时 ,菌体浓度达到72g/L ,热凝胶合成的产量可达 30.5g L ,比原来NH4Cl浓度为11g L时提高了51.7%。提高菌体浓度意味着需要提高溶氧水平来满足细菌的生长和代谢。初始氮源NH4Cl浓度的增加虽然能使菌体浓度得到提高 ,但发酵过程对溶氧的需求也相应增加 ,需要提高搅拌转速和通风以增加供氧水平。但高搅拌速率产生的高剪切力对热凝胶的凝胶性能将产生破坏作用 ,因此在发酵过程中需要综合考虑细菌培养密度对合成热凝胶产量和质量的影响。  相似文献   

11.
目的研究DY芽孢杆菌发酵过程中微量元素Mn离子对芽孢形成率的影响。方法通过实验设计,调整发酵用水中锰离子的浓度,进行DY芽孢杆菌生产曲线的同步发酵分析,并对发酵终产物进行生化反应鉴定。结果实验结果显示0.08mg/L锰离子发酵浓度,显著提升了DY芽孢杆菌发酵过程中芽孢形成率,且最终发酵产物生化反应鉴定符合生产菌种原始特征。结论DY芽孢杆菌发酵过程中,除发酵培养基的选择、培养条件的控制等因素会影响芽孢形成率外,作为微量元素,适量Mn离子的引入,可以影响菌体生长曲线,促进芽孢的形成,使菌体活性更高,从而使发酵效果得到显著提升,为今后更进一步提高发酵质量提供了基础和依据。  相似文献   

12.
郭养浩  张雅惠   《微生物学通报》1992,19(1):24-26,63
用分批培养的方法研究了醋酸发酵过程的动力学特性。醋酸杆菌AS 1.41的醋酸发酵过程属“非生长偶联型”,发酵初期菌体迅速增殖,发酵中期为醋酸生成的高峰期。高浓度的底物和产物对菌体生长及其产酸活性有抑制作用。在乙醇浓度2—4g/100ml和醋酸浓度小于3g/100ml范围内,发酵反应效率最佳,最大菌体比生长速率可达0.127h-1,最大醋酸比生成速率为0.12g醋酸/h·OD。在工业常用的初始底物浓度范围内,底物抑制效应主要表现在对菌体生长的影响上。高浓度醋酸的存在显著抑制该菌的产酸能  相似文献   

13.
进化代谢选育高渗透压耐受型产琥珀酸大肠杆菌   总被引:1,自引:0,他引:1  
在以碳酸钠为酸中和剂的大肠杆菌两阶段发酵产琥珀酸的过程中,由于Na+的积累造成发酵体系中渗透压的提高,严重抑制了琥珀酸的产物浓度。为了增强大肠杆菌对渗透压的耐受性,考察了利用进化代谢方法筛选高渗透压耐受型高产琥珀酸大肠杆菌菌株的可行性。进化代谢系统作为一种菌株突变装置,可以使菌体在连续培养条件下以最大的生长速率生长。以NaCl为渗透压调节剂,通过在连续培养装置中逐步提高NaCl浓度使菌体在高渗透压条件下快速生长,最终得到了一株高渗透压耐受型琥珀酸生产菌株Escherichia coli XB4。以碳酸钠为酸中和剂,在7 L发酵罐中利用Escherichia coli XB4进行两阶段发酵,厌氧培养60 h后,琥珀酸产量达到了69.5 g/L,琥珀酸生产速率达到了1.81 g/(L.h),分别比出发菌株提高了18.6%和20%。  相似文献   

14.
毕赤酵母高密度发酵工艺的研究   总被引:9,自引:0,他引:9  
高密度发酵是毕赤酵母提高蛋白表达量的一种重要策略,发酵工艺是高密度发酵的一个重要因素。采用下列措施均可以有效地提高表达水平:调节基础培养基,采用变pH和变温发酵,提高DO,选择最适的诱导前菌体密度和比生长速率并降低甘油初始浓度和采用分段式指数流加进行调控。选择合适的甲醇补料策略:甲醇限制补料(MLFB)、氧气限制补料(OLFB)、甲醇不限制补料(MNLFB)和温度限制补料(TLFB)。采用两种方式调控补料:诱导阶段菌体生长时,甲醇比消耗速率(qMeOH)为0.02-0.03gg-1h-1,而菌体不生长时,qMeOH采用较高值。  相似文献   

15.
谭云  黎继烈  王卫  罗倩  朱晓媛 《菌物学报》2016,35(1):94-103
构建了重组毕赤酵母产青霉素G酰化酶的分批发酵动力学模型。实验考察了分批发酵过程中甘油消耗、甲醇浓度、菌体浓度、溶氧、补料时间对青霉素G酰化酶活力的影响。应用Matlab软件,对菌体生长、基质消耗和产物生成方程进行最优参数估算和非线性拟合,得到相应的动力学模型。模型的计算值与实验值能较好地拟合,表明所建模型能较好反映重组毕赤酵母产青霉素G酰化酶的分批发酵过程。  相似文献   

16.
目的:为实现甲醇资源化产细菌纤维素发酵过程的优化,研究纤维素生产菌株一木醋杆菌(Gluconacetobacter χγlinus)的静态发酵动力学特性.方法:将木醋杆菌接入甲醇浓度分别为2.7%和4.5%的培养基中驯化,根据Logistic方程和LuedekingPiret方程,研究周期为13d的静态发酵动力学过程.结果:确定静态发酵过程的菌体生长、细菌纤维素合成、底物消耗的动力学参数,得到动力学方程,拟合试验值与模型值,得到甲醇模拟废水培养基平均拟合误差为16%,略高于基础培养基的14%.结论:利用甲醇产纤维索的模型方程可预测菌浓、产物浓度及底物消耗规律,实现静态发酵过程的优化.  相似文献   

17.
在发酵生产利福霉素SV的过程中,其菌丝体的生长代谢情况及产物发酵合成都与有活力的菌丝量密切相关.介绍了在线活细胞传感仪测定活细胞量的方法,它利用细胞的介电特性,能够排除发酵液中固含物的干扰,测得的电容值与活细胞浓度呈线性相关,可以作为工艺优化过程中的关键参数.通过电容变化反映的前期生长出现的二次生长现象,进行了通过使用迟效氮源豆饼粉代替了原培养基中价格昂贵的速效氮源蛋白胨,成功消除了发酵前期由于氮源利用转换造成的生长停滞期,利用豆饼粉情况下培养前期的OUR和CER达到了14.8和15.3 mmol/L/h,明显高于利用速效氮源蛋白胨A组的8.6和11.3 mmol/L/h,保证了持续较高的比生长速率,对于促进菌体的氧消耗速率的增加和维持有着重要的作用,明显有利于利福霉素的合成与速率的维持,氮源替代组的发酵效价达到了5969±19 U/ml,与对照组(5030±17U/ml)相比显著提升发酵单位18.7%以上.  相似文献   

18.
工业发酵过程中,细胞浓度是一个非常重要的生理参数,不但可以用来计算比生长速率、底物消耗速率、生物量产率和维持系数等参数,还可以及时判别是否有染菌等异常情况发生。  相似文献   

19.
分析了十三碳二元酸发酵过程中产酸期的代谢特点,对产酸期四相体系发酵动力学进行了研究。提出了菌体生长、产物形成及底物消耗的动力学模型,对模型参数进行了回归估值,并对产酸期进行了拟合,结果表明,模型的计算值和实测值较为吻合,平均相对偏差为3.6%。利用所建模型对产酸期进行了多种操作条件下的模拟计算,结果表明,提高进入产酸期的菌体浓度、缩短菌体生长期时间及降低发酵液中产物浓度具有提高产物形成速率的有效途径。  相似文献   

20.
研究了克雷伯肺炎杆菌(Klebsiella pneumoniae)批式流加发酵生产1,3-丙二醇的发酵工艺,根据1,3-丙二醇的生产和菌体生长相关的特点,采用营养基质限制性流加的发酵工艺,通过控制氮源氯化铵以保持细胞稳定生长。结果表明:过低的氮源浓度,细胞生长受到限制,影响产物1,3-PD的合成;过高的氮源浓度,细胞比生长速率增加,但1,3-PD关于消耗甘油的得率降低,用于生长和维持代谢所消耗的甘油量增加。以0.41 g/(L·h)的氮源流加速率,残余氯化铵浓度在0.1 g/L时,转化率和生产强度最高。发酵25 h~28 h后,1,3-丙二醇最终浓度达到52.03 g/L,生产强度为2.04 g/(L·h),相对于甘油的摩尔转化率为0.66,分别比氮源限制前提高了28.0 %、35.1 %及29.4 %。通过限制性流加氯化铵,控制细胞的比生长速率,使底物甘油有效转变为发酵的目标产物1,3-PD,有效实现产物1,3-PD的高生产强度以及对甘油的高转化率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号