首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute human immunodeficiency virus type 1 (HIV-1) replication in astrocytes produces minimal new virus particles due, in part, to inefficient translation of viral structural proteins despite high levels of cytoplasmic viral mRNA. We found that a highly reactive double-stranded (ds) RNA-binding protein kinase (PKR) response in astrocytes underlies this inefficient translation of HIV-1 mRNA. The dsRNA elements made during acute replication of HIV-1 in astrocytes triggers PKR activation and the specific inhibition of HIV-1 protein translation. The heightened PKR response results from relatively low levels of the cellular antagonist of PKR, the TAR RNA binding protein (TRBP). Efficient HIV-1 production was restored in astrocytes by inhibiting the innate PKR response to HIV-1 dsRNA with dominant negative PKR mutants, or PKR knockdown by siRNA gene silencing. Increasing the expression of TRBP in astrocytes restored acute virus production to levels comparable to those observed in permissive cells. Therefore, the robust innate PKR antiviral response in astrocytes results from relatively low levels of TRBP expression and contributes to their restricted infection. Our findings highlight TRBP as a novel cellular target for therapeutic interventions to block productive HIV-1 replication in cells that are fully permissive for HIV-1 infection.  相似文献   

2.
TARRNA结合蛋白是细胞中双链RNA结合蛋白家族成员之一.它可以结合HIV-1TARRNA,并与Tat协同作用激活LTR表达,进而促进病毒的转录与翻译.TRBP也是将干扰素抗病毒通路与RNA干扰免疫通路相连的一种细胞蛋白.在干扰素诱生的PKR反应中,TRBP通过直接抑制PKR的自磷酸化、与PKR竞争通用的RNA底物或与PACT形成异源二聚体等机制抑制细胞内的PKR反应,从而降低了PKR介导的对病毒表达的抑制作用.TRBP与Dicer和Ago2等组成的RNA诱导沉默复合体,在RNA干扰中发挥着关键作用并调控随后的序列特异性降解.在HIV-1感染中,TRBP更倾向于促进病毒的表达与复制,因此TRBP也成为控制HIV-1感染的新靶点.  相似文献   

3.
4.
RNA interference (RNAi) is now widely used for gene silencing in mammalian cells. The mechanism uses the RNA-induced silencing complex, in which Dicer, Ago2, and the human immunodeficiency virus type 1 (HIV-1) TAR RNA binding protein (TRBP) are the main components. TRBP is a protein that increases HIV-1 expression and replication by inhibition of the interferon-induced protein kinase PKR and by increasing translation of viral mRNA. After HIV infection, TRBP could restrict the viral RNA through its activity in RNAi or could contribute more to the enhancement of viral replication. To determine which function will be predominant in the virological context, we analyzed whether the inhibition of its expression could enhance or decrease HIV replication. We have generated small interfering RNAs (siRNAs) against TRBP and found that they decrease HIV-1 long terminal repeat (LTR) basal expression 2-fold, and the LTR Tat transactivated level up to 10-fold. In the context of HIV replication, siRNAs against TRBP decrease the expression of viral genes and inhibit viral production up to fivefold. The moderate increase in PKR expression and activation indicates that it contributes partially to viral gene inhibition. The moderate decrease in micro-RNA (miRNA) biogenesis by TRBP siRNAs suggests that in the context of HIV replication, TRBP functions other than RNAi are predominant. In addition, siRNAs against Dicer decrease viral production twofold and impede miRNA biogenesis. These results suggest that, in the context of HIV replication, TRBP contributes mainly to the enhancement of virus production and that Dicer does not mediate HIV restriction by RNAi.  相似文献   

5.
6.
Trans-activation response (TAR) RNA-binding protein (TRBP) is a cellular protein that binds to the human immunodeficiency virus-1 (HIV-1) TAR element RNA. It has two double-stranded RNA binding domains (dsRBDs), but only one is functional for TAR binding. TRBP interacts with the interferon-induced protein kinase R (PKR) and inhibits its activity. We used the yeast two-hybrid assay to map the interaction sites between the two proteins. We show that TRBP and PKR-N (178 first amino acids of PKR) interact with PKR wild type and inhibit the PKR-induced yeast growth defect in this assay. We characterized two independent PKR-binding sites in TRBP. These sites are located in each dsRBD in TRBP, indicating that PKR-TRBP interaction does not require the RNA binding activity present only in dsRBD2. TRBP and its fragments that interact with PKR reverse the PKR-induced suppression of HIV-1 long terminal repeat expression. In addition, TRBP activates the HIV-1 long terminal repeat expression to a larger extent than the addition of each domain. These data suggest that TRBP activates gene expression in PKR-dependent and PKR-independent manners.  相似文献   

7.
TAR RNA binding protein (TRBP) belongs to an RNA binding protein family that includes the double-stranded RNA-activated protein kinase (PKR), Drosophila Staufen and Xenopus xlrbpa. One member of this family, PKR, is a serine/threonine kinase which has anti-viral and anti-proliferative effects. In this study we show that TRBP is a cellular down-regulator of PKR function. Assaying expression from an infectious HIV-1 molecular clone, we found that PKR inhibited viral protein synthesis and that over-expression of TRBP effectively countered this inhibition. In intracellular and in cell-free assays we show that TRBP directly inhibits PKR autophosphorylation through an RNA binding-independent pathway. Biologically, TRBP serves a growth-promoting role; cells that overexpress TRBP exhibit transformed phenotypes. Our results demonstrate the oncogenic potential of TRBP and are consistent with the notion that intracellular PKR function contributes physiologically towards regulating cellular proliferation.  相似文献   

8.
Summary: The TAR RNA binding protein (TRBP) has emerged as a key player in many cellular processes. First identified as a cellular protein that facilitates the replication of human immunodeficiency virus, TRBP has since been shown to inhibit the activation of protein kinase R (PKR), a protein involved in innate immune responses and the cellular response to stress. It also binds to the PKR activator PACT and regulates its function. TRBP also contributes to RNA interference as an integral part of the minimal RNA-induced silencing complex with Dicer and Argonaute proteins. Due to its multiple functions in the cell, TRBP is involved in oncogenesis when its sequence is mutated or its expression is deregulated. The depletion or overexpression of TRBP results in malignancy, suggesting that the balance of TRBP expression is key to normal cellular function. These studies show that TRBP is multifunctional and mediates cross talk between different pathways. Its activities at the molecular level impact the cellular function from normal development to cancer and the response to infections.  相似文献   

9.
10.
The reversible phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 (eIF2alpha) is a well-characterized mechanism of translational control in response to a wide variety of cellular stresses, including viral infection. Beside PKR, the eIF2alpha kinase GCN2 participates in the cellular response against viral infection by RNA viruses with central nervous system tropism. PKR has also been involved in the antiviral response against HIV-1, although this antiviral effect is very limited due to the distinct mechanisms evolved by the virus to counteract PKR action. Here we report that infection of human cells with HIV-1 conveys the proteolytic cleavage of GCN2 and that purified HIV-1 and HIV-2 proteases produce direct proteolysis of GCN2 in vitro, abrogating the activation of GCN2 by HIV-1 RNA. Transfection of distinct cell lines with a plasmid encoding an HIV-1 cDNA clone competent for a single round of replication resulted in the activation of GCN2 and the subsequent eIF2alpha phosphorylation. Moreover, transfection of GCN2 knockout cells or cells with low levels of phosphorylated eIF2alpha with the same HIV-1 cDNA clone resulted in a marked increase of HIV-1 protein synthesis. Also, the over-expression of GCN2 in cells led to a diminished viral protein synthesis. These findings suggest that viral RNA produced during HIV-1 infection activates GCN2 leading to inhibition of viral RNA translation, and that HIV-1 protease cleaves GCN2 to overcome its antiviral effect.  相似文献   

11.
反式激活应答(transactivation response,TAR)元件RNA作为HIV-1中的一种非编码RNA,从转录与翻译水平负调控HIV-1的基因表达.同时HIV-1采取了相应的策略拮抗TAR RNA的负调控作用:病毒蛋白Tat或细胞蛋白TAR RNA结合蛋白(TRBP)结合TAR RNA后,分别在转录与翻译水平促进HIV-1的基因表达.此外,TAR编码的miRNA有助于保持HIV的潜伏感染及阻止细胞凋亡.TAR与其它蛋白间相互作用及其功能的研究对于深入了解HIV-1感染细胞后的调控机制,寻求新的抗HIV治疗靶点具有重要意义.  相似文献   

12.
TAR RNA-binding protein TRBP was originally isolated by its binding affinity for radiolabeled HIV-1 leader RNA. Subsequent studies have suggested that this protein is one member of a family of double-stranded RNA-binding proteins. Recent findings indicate that TRBP might function to antagonize the translational inhibitory effect that can be mediated through cellular protein kinase, PKR. Here, we report on the over-expression of a cDNA coding for TRBP in eukaryotic SF9 cells using baculovirus. We characterized the nuclear localization of TRBP in insect cells, and we demonstrate that TRBP co-immunoprecipitates with a protein in these cells antigenically related to human PKR.  相似文献   

13.
Dicer is a key enzyme involved in RNA interference (RNAi) and microRNA (miRNA) pathways. It is required for biogenesis of miRNAs and small interfering RNAs (siRNAs), and also has a role in the effector steps of RNA silencing. Apart from Argonautes, no proteins are known to associate with Dicer in mammalian cells. In this work, we describe the identification of TRBP (human immunodeficiency virus (HIV-1) transactivating response (TAR) RNA-binding protein) as a protein partner of human Dicer. We show that TRBP is required for optimal RNA silencing mediated by siRNAs and endogenous miRNAs, and that it facilitates cleavage of pre-miRNA in vitro. TRBP had previously been assigned several functions, including inhibition of the interferon-induced double-stranded RNA-regulated protein kinase PKR and modulation of HIV-1 gene expression by association with TAR. The TRBP-Dicer interaction shown raises interesting questions about the potential interplay between RNAi and interferon-PKR pathways.  相似文献   

14.
15.
16.
HIV-1 uses a programmed -1 ribosomal frameshift to synthesize the precursor of its enzymes, Gag-Pol. The frameshift efficiency that is critical for the virus replication, is controlled by an interaction between the ribosome and a specific structure on the viral mRNA, the frameshift stimulatory signal. The rate of cap-dependent translation initiation is known to be altered by the TAR RNA structure, present at the 5′ and 3′ end of all HIV-1 mRNAs. Depending upon its concentration, TAR activates or inhibits the double-stranded RNA-dependent protein kinase (PKR). We investigated here whether changes in translation initiation caused by TAR affect HIV-1 frameshift efficiency. CD4+ T cells and 293T cells were transfected with a dual-luciferase construct where the firefly luciferase expression depends upon the HIV-1 frameshift. Translation initiation was altered by adding TAR in cis or trans of the reporter mRNA. We show that HIV-1 frameshift efficiency correlates negatively with changes in the rate of translation initiation caused by TAR and mediated by PKR. A model is presented where changes in the rate of initiation affect the probability of frameshifting by altering the distance between elongating ribosomes on the mRNA, which influences the frequency of encounter between these ribosomes and the frameshift stimulatory signal.  相似文献   

17.
The TAR RNA binding Protein, TRBP, inhibits the activity of the interferon-induced protein kinase R (PKR), whereas the PKR activator, PACT, activates its function. TRBP and PACT also bind to each other through their double-stranded RNA binding domains (dsRBDs) and their Medipal domains, which may influence their activity on PKR. In a human immunodeficiency virus (HIV) long terminal repeat-luciferase assay, PACT unexpectedly reversed PKR-mediated inhibition of gene expression. In a translation inhibition assay in HeLa cells, PACT lacking the 13 C-terminal amino acids (PACTΔ13), but not full-length PACT, activated PKR and enhanced interferon-mediated repression. In contrast, in the astrocytic U251MG cells that express low TRBP levels, both proteins activate PKR, but PACTΔ13 is stronger. Immunoprecipitation assays and yeast two-hybrid assays show that TRBP and PACTΔ13 interact very weakly due to a loss of binding in the Medipal domain. PACT-induced PKR phosphorylation was restored in Tarbp2−/− murine tail fibroblasts and in HEK293T or HeLa cells when TRBP expression was reduced by RNA interference. In HEK293T and HeLa cells, arsenite, peroxide, and serum starvation-mediated stresses dissociated the TRBP-PACT interaction and increased PACT-induced PKR activation, demonstrating the relevance of this control in a physiological context. Our results demonstrate that in cells, TRBP controls PACT activation of PKR, an activity that is reversed by stress.  相似文献   

18.
TAR RNA-binding protein, TRBP, was recently discovered to be an essential partner for Dicer and a crucial component of the RNA-induced silencing complex (RISC), a critical element of the RNA interference (RNAi) of the cell apparatus. Human TRBP was originally characterized and cloned 15 years ago based on its high affinity for binding the HIV-1 encoded leader RNA, TAR. RNAi is used, in part, by cells to defend against infection by viruses. Here, we report that transfected TAR RNA can attenuate the RNAi machinery in human cells. Our data suggest that TAR RNA sequesters TRBP rendering it unavailable for downstream Dicer-RISC complexes. TAR-induced inhibition of Dicer-RISC activity in transfected cells was partially relieved by exogenous expression of TRBP.  相似文献   

19.
20.
The replication of viral nucleic acids triggers cellular antiviral responses. The double-stranded RNA (dsRNA)-activated protein kinase (PKR) plays a key role in this antiviral response. We have recently reported that JFH-1 HCV replication in Huh-7 cells triggers PKR activation. Here we show that the HCV-induced PKR activation is further stimulated by the mitogen- and stress-activated protein kinase 2 (MSK2), a member of the 90 kDa ribosomal S6 kinase (RSK) family that has emerged as an important downstream effector of ERK and p38 MAPK signaling pathways. We show that MSK2 binds PKR and stimulates PKR phosphorylation, whereas the closely related MSK1 and RSK2 have no effect. Our data further indicate that MSK2 functions as an adaptor in mediating PKR activation, apparently independent of its catalytic activity. These results suggest that, in addition to viral dsRNA, stress signaling contributes to the regulation of cellular antiviral response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号