首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formylglycine-generating enzyme (FGE) post-translationally converts a specific cysteine in newly synthesized sulfatases to formylglycine (FGly). FGly is the key catalytic residue of the sulfatase family, comprising 17 nonredundant enzymes in human that play essential roles in development and homeostasis. FGE, a resident protein of the endoplasmic reticulum, is also secreted. A major fraction of secreted FGE is N-terminally truncated, lacking residues 34–72. Here we demonstrate that this truncated form is generated intracellularly by limited proteolysis mediated by proprotein convertase(s) (PCs) along the secretory pathway. The cleavage site is represented by the sequence RYSR72↓, a motif that is conserved in higher eukaryotic FGEs, implying important functionality. Residues Arg-69 and Arg-72 are critical because their mutation abolishes FGE processing. Furthermore, residues Tyr-70 and Ser-71 confer an unusual property to the cleavage motif such that endogenous as well as overexpressed FGE is only partially processed. FGE is cleaved by furin, PACE4, and PC5a. Processing is disabled in furin-deficient cells but fully restored upon transient furin expression, indicating that furin is the major protease cleaving FGE. Processing by endogenous furin occurs mostly intracellularly, although also extracellular processing is observed in HEK293 cells. Interestingly, the truncated form of secreted FGE no longer possesses FGly-generating activity, whereas the unprocessed form of secreted FGE is active. As always both forms are secreted, we postulate that furin-mediated processing of FGE during secretion is a physiological means of higher eukaryotic cells to regulate FGE activity upon exit from the endoplasmic reticulum.  相似文献   

2.
Neuropilin-2 (NRP2) is well known as a co-receptor for class 3 semaphorins and vascular endothelial growth factors, involved in axon guidance and angiogenesis. Moreover, NRP2 was shown to promote chemotactic migration of human monocyte-derived dendritic cells (DCs) toward the chemokine CCL21, a function that relies on the presence of polysialic acid (polySia). In vertebrates, this posttranslational modification is predominantly found on the neural cell adhesion molecule (NCAM), where it is synthesized on N-glycans by either of the two polysialyltransferases, ST8SiaII or ST8SiaIV. In contrast to NCAM, little is known on the biosynthesis of polySia on NRP2. Here we identified the polySia attachment sites and demonstrate that NRP2 is recognized only by ST8SiaIV. Although polySia-NRP2 was found on bone marrow-derived DCs from wild-type and St8sia2−/− mice, polySia was completely lost in DCs from St8sia4−/− mice despite normal NRP2 expression. In COS-7 cells, co-expression of NRP2 with ST8SiaIV but not ST8SiaII resulted in the formation of polySia-NRP2, highlighting distinct acceptor specificities of the two polysialyltransferases. Notably, ST8SiaIV synthesized polySia selectively on a NRP2 glycoform that was characterized by the presence of sialylated core 1 and core 2 O-glycans. Based on a comprehensive site-directed mutagenesis study, we localized the polySia attachment sites to an O-glycan cluster located in the linker region between b2 and c domain. Combined alanine exchange of Thr-607, -613, -614, -615, -619, and -624 efficiently blocked polysialylation. Restoration of single sites only partially rescued polysialylation, suggesting that within this cluster, polySia is attached to more than one site.  相似文献   

3.
Bone morphogenetic proteins (BMPs) are synthesized as proproteins that undergo proteolytic processing by furin/subtilisin proprotein convertases to release the active ligand. Here we study processing of BMP5/6/7/8 proteins, including the Drosophila orthologs Glass Bottom Boat (Gbb) and Screw (Scw) and human BMP7. Gbb and Scw have three functional furin/subtilisin proprotein convertase cleavage sites; two between the prodomain and ligand domain, which we call the Main and Shadow sites, and one within the prodomain, which we call the Pro site. In Gbb each site can be cleaved independently, although efficient cleavage at the Shadow site requires cleavage at the Main site, and remarkably, none of the sites is essential for Gbb function. Rather, Gbb must be processed at either the Pro or Main site to produce a functional ligand. Like Gbb, the Pro and Main sites in Scw can be cleaved independently, but cleavage at the Shadow site is dependent on cleavage at the Main site. However, both Pro and Main sites are essential for Scw function. Thus, Gbb and Scw have different processing requirements. The BMP7 ligand rescues gbb mutants in Drosophila, but full-length BMP7 cannot, showing that functional differences in the prodomain limit the BMP7 activity in flies. Furthermore, unlike Gbb, cleavage-resistant BMP7, although non-functional in rescue assays, activates the downstream signaling cascade and thus retains some functionality. Our data show that cleavage requirements evolve rapidly, supporting the notion that changes in post-translational processing are used to create functional diversity between BMPs within and between species.  相似文献   

4.
Among mammalian secreted phospholipases A(2) (sPLA(2)s), group X sPLA(2) has the most potent hydrolyzing activity toward phosphatidylcholine and is involved in arachidonic acid (AA) release. Group X sPLA(2) is produced as a proenzyme and contains a short propeptide of 11 amino acids ending with a dibasic motif, suggesting cleavage by proprotein convertases. Although the removal of this propeptide is clearly required for enzymatic activity, the cellular location and the protease(s) involved in proenzyme conversion are unknown. Here we have analyzed the maturation of group X sPLA(2) in HEK293 cells, which have been extensively used to analyze sPLA(2)-induced AA release. Using recombinant mouse (PromGX) and human (ProhGX) proenzymes; HEK293 cells transfected with cDNAs coding for full-length ProhGX, PromGX, and propeptide mutants; and various permeable and non-permeable sPLA(2) inhibitors and protease inhibitors, we demonstrate that group X sPLA(2) is mainly converted intracellularly and releases AA before externalization from the cell. Most strikingly, the exogenous proenzyme does not elicit AA release, whereas the transfected proenzyme does elicit AA release in a way insensitive to non-permeable sPLA(2) inhibitors. In transfected cells, a permeable proprotein convertase inhibitor, but not a non-permeable one, prevents group X sPLA(2) maturation and partially blocks AA release. Mutations at the dibasic motif of the propeptide indicate that the last basic residue is required and sufficient for efficient maturation and AA release. All together, these results argue for the intracellular maturation of group X proenzyme in HEK293 cells by a furin-like proprotein convertase, leading to intracellular release of AA during secretion.  相似文献   

5.
Angiopoietin-like protein 4 (ANGPTL4) has been associated with a variety of diseases. It is known as an endogenous inhibitor of lipoprotein lipase (LPL), and it modulates lipid deposition and energy homeostasis. ANGPTL4 is cleaved by unidentified protease(s), and the biological importance of this cleavage event is not fully understood with respect to its inhibitory effect on LPL activity. Here, we show that ANGPTL4 appears on the cell surface as the full-length form, where it can be released by heparin treatment in culture and in vivo. ANGPTL4 protein is then proteolytically cleaved into several forms by proprotein convertases (PCs). Several PCs, including furin, PC5/6, paired basic amino acid-cleaving enzyme 4, and PC7, are able to cleave human ANGPTL4 at a consensus site. PC-specific inhibitors block the processing of ANGPTL4. Blockage of ANGPTL4 cleavage reduces its inhibitory effects on LPL activity and decreases its ability to raise plasma triglyceride levels. In summary, the cleavage of ANGPTL4 by these PCs modulates its inhibitory effect on LPL activity.  相似文献   

6.
PCSK9, a target for the treatment of dyslipidemia, enhances the degradation of the LDL receptor (LDLR) in endosomes/lysosomes, up-regulating LDL-cholesterol levels. Whereas the targeting and degradation of the PCSK9-LDLR complex are under scrutiny, the roles of the N- and C-terminal domains of PCSK9 are unknown. Although autocatalytic zymogen processing of PCSK9 occurs at Gln(152)↓, here we show that human PCSK9 can be further cleaved in its N-terminal prosegment at Arg(46)↓ by an endogenous enzyme of insect High Five cells and by a cellular mammalian protease, yielding an ~4-fold enhanced activity. Removal of the prosegment acidic stretch resulted in ~3-fold higher binding to LDLR in vitro, in ≥4-fold increased activity on cellular LDLR, and faster cellular internalization in endosome/lysosome-like compartments. Finally, swapping the acidic stretch of PCSK9 with a similar one found in the glycosylphosphatidylinositol-anchored heparin-binding protein 1 does not impair PCSK9 autoprocessing, secretion, or activity and confirmed that the acidic stretch acts as an inhibitor of PCSK9 function. We also show that upon short exposure to pH values 6.5 to 5.5, an ~2.5-fold increase in PCSK9 activity on total and cell surface LDLR occurs, and PCSK9 undergoes a second cleavage at Arg(248), generating a two-chain PCSK9-ΔN(248). At pH values below 5.5, PCSK9 dissociates from its prosegment and loses its activity. This pH-dependent activation of PCSK9 represents a novel pathway to further activate PCSK9 in acidic endosomes. These data enhance our understanding of the functional role of the acidic prosegment and on the effect of pH in the regulation of PCSK9 activity.  相似文献   

7.
Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (~60 kDa) is processed into active BMP10 (~14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.  相似文献   

8.
Mucin-type O-glycosylation is an evolutionarily conserved protein modification present on membrane-bound and secreted proteins. Aberrations in O-glycosylation are responsible for certain human diseases and are associated with disease risk factors. Recent studies have demonstrated essential roles for mucin-type O-glycosylation in protein secretion, stability, processing, and function. Here, we summarize our current understanding of the diverse roles of mucin-type O-glycosylation during eukaryotic development. Appreciating how this conserved modification operates in developmental processes will provide insight into its roles in human disease and disease susceptibilities.  相似文献   

9.
Nearly 70 inherited human glycosylation disorders span a breathtaking clinical spectrum, impacting nearly every organ system and launching a family-driven diagnostic odyssey. Advances in genetics, especially next generation sequencing, propelled discovery of many glycosylation disorders in single and multiple pathways. Interpretation of whole exome sequencing results, insights into pathological mechanisms, and possible therapies will hinge on biochemical analysis of patient-derived materials and animal models. Biochemical diagnostic markers and readouts offer a physiological context to confirm candidate genes. Recent discoveries suggest novel perspectives for textbook biochemistry and novel research opportunities. Basic science and patients are the immediate beneficiaries of this bidirectional collaboration.  相似文献   

10.
Several forms of congenital muscular dystrophy, referred to as dystroglycanopathies, result from defects in the protein O-mannosylation biosynthetic pathway. In this minireview, I discuss 12 proteins involved in the pathway and how they play a role in the building of glycan structures (most notably on the protein α-dystroglycan) that allow for binding to multiple proteins of the extracellular matrix.  相似文献   

11.
12.
Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2) is a key branch point intermediate in the insect N-glycosylation pathway because it can be either trimmed by a processing β-N-acetylglucosaminidase (FDL) to produce paucimannosidic N-glycans or elongated by N-acetylglucosaminyltransferase II (GNT-II) to produce complex N-glycans. N-acetylglucosaminyltransferase I (GNT-I) contributes to branch point intermediate production and can potentially reverse the FDL trimming reaction. However, there has been no concerted effort to evaluate the relationships among these three enzymes in any single insect system. Hence, we extended our previous studies on Spodoptera frugiperda (Sf) FDL to include GNT-I and -II. Sf-GNT-I and -II cDNAs were isolated, the predicted protein sequences were analyzed, and both gene products were expressed and their acceptor substrate specificities and intracellular localizations were determined. Sf-GNT-I transferred N-acetylglucosamine to Man(5)GlcNAc(2), Man(3)GlcNAc(2), and GlcNAc(β1-2)Man(α1-6)[Man(α1-3)]ManGlcNAc(2), demonstrating its role in branch point intermediate production and its ability to reverse FDL trimming. Sf-GNT-II only transferred N-acetylglucosamine to Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2), demonstrating that it initiates complex N-glycan production, but cannot use Man(3)GlcNAc(2) to produce hybrid or complex structures. Fluorescently tagged Sf-GNT-I and -II co-localized with an endogenous Sf Golgi marker and Sf-FDL co-localized with Sf-GNT-I and -II, indicating that all three enzymes are Golgi resident proteins. Unexpectedly, fluorescently tagged Drosophila melanogaster FDL also co-localized with Sf-GNT-I and an endogenous Drosophila Golgi marker, indicating that it is a Golgi resident enzyme in insect cells. Thus, the substrate specificities and physical juxtapositioning of GNT-I, GNT-II, and FDL support the idea that these enzymes function at the N-glycan processing branch point and are major factors determining the net outcome of the insect cell N-glycosylation pathway.  相似文献   

13.
14.
Simple mucin-type cancer-associated O-glycan structures, such as the Tn antigen (GalNAc-O-Ser/Thr), are expressed by certain helminth parasites. These antigens are involved in several types of receptor-ligand interactions, and they are potential targets for immunotherapy. The aim of this work was to study the initiation pathway of mucin-type O-glycosylation in Fasciola hepatica, performing a biochemical and immunohistochemical characterisation of Tn and sialyl-Tn antigens, and evaluating the ppGaNTase activity, which catalyses the first step in O-glycan biosynthesis. Using ELISA, both Tn and sialyl-Tn antigens were detected predominantly in the somatic and deoxycholate extracts. Immunofluorescence analysis revealed that Tn antigen is preferentially expressed in testis, while sialyl-Tn glycoproteins were more widely distributed, being present in parenchymal cells, basal membrane of the tegument, and apical surface of epithelial cells lining the caeca. On the basis of their electrophoretic mobility, Tn glycoproteins were resolved as six components of 10, 37, 76, 125, 170 and 205 kDa, and sialyl-Tn components showed an apparent molecular mass of 28 and 32 kDa, and two broad bands of 90-110 and 170-190 kDa. The observation that only the 76 kDa Tn-glycoprotein remained in the 0.6 N perchloric acid-soluble fraction suggests that it could be a good candidate for mucin characterisation in this parasite. The ppGaNTase activity showed its maximal activity at pH 7-7.5 and 37 degrees C, showing that Mn(2+) was the best divalent cation activator. Using a panel of nine synthetic peptides as acceptor substrates, we found that F. hepatica ppGaNTase was able to glycosylate both threonines and serines, the best substrates being the peptides derived from the tandem repeat region of human mucins (MUC2 and MUC6), and from Trypanosoma cruzi and Trypanosoma brucei glycoproteins. The results reported here constitute the first evidence on O-glycosylation pathways in F. hepatica, and may help to identify new biological characteristics of this parasite as well as of the host-parasite relationship.  相似文献   

15.
Mucin type O-glycosylation is a highly conserved form of post-translational modification initiated by the family of enzymes known as the polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAcTs in mammals and PGANTs in Drosophila). To address the cellular functions of the many PGANT family members, RNA interference (RNAi) to each pgant gene was performed in two independent Drosophila cell culture lines. We demonstrate that RNAi to individual pgant genes results in specific reduction in gene expression without affecting the expression of other family members. Cells with reduced expression of individual pgant genes were then examined for changes in viability, morphology, adhesion, and secretion to assess the contribution of each family member to these cellular functions. Here we find that RNAi to pgant3, pgant6, or pgant7 resulted in reduced secretion, further supporting a role for O-glycosylation in proper secretion. Additionally, RNAi to pgant3 or pgant6 resulted in altered Golgi organization, suggesting a role for each in establishing or maintaining proper secretory apparatus structure. Other subcellular effects observed included multinucleated cells seen after RNAi to either pgant2 or pgant35A, suggesting a role for these genes in the completion of cytokinesis. These studies demonstrate the efficient and specific knockdown of pgant gene expression in two Drosophila cell culture systems, resulting in specific morphological and functional effects. Our work provides new information regarding the biological roles of O-glycosylation and illustrates a new platform for interrogating the cellular and subcellular effects of this form of post-translational modification.  相似文献   

16.
NO is a versatile free radical that mediates numerous biological functions within every major organ system. A molecular pathway by which NO accomplishes functional diversity is the selective modification of protein cysteine residues to form S-nitrosocysteine. This post-translational modification, S-nitrosylation, impacts protein function, stability, and location. Despite considerable advances with individual proteins, the in vivo biological chemistry, the structural elements that govern the selective S-nitrosylation of cysteine residues, and the potential overlap with other redox modifications are unknown. In this minireview, we explore the functional features of S-nitrosylation at the proteome level and the structural diversity of endogenously modified residues, and we discuss the potential overlap and complementation that may exist with other cysteine modifications.  相似文献   

17.
O-Glycosylation is emerging as a common posttranslational modification of surface exposed proteins in bacterial mucosal pathogens. In pathogenic Neisseria an O-glycosylation pathway modifies a single abundant protein, pilin, the subunit protein that forms pili. Here, we identify an additional outer membrane glycoprotein in pathogenic Neisseria, the nitrite reductase AniA, that is glycosylated in its C-terminal repeat region by the pilin glycosylation pathway. To our knowledge, this is the first report of a general O-glycosylation pathway in a prokaryote. We also show that AniA displays polymorphisms in residues that map to the surface of the protein. A frame-shift mutation abolishes AniA expression in 34% of Neisseria meningitidis strains surveyed, however, all Neisseria gonorrhoeae strains examined are predicted to express AniA, implying a crucial role for AniA in gonococcal biology.  相似文献   

18.
19.
The low density lipoprotein receptor (LDLR) is crucial for cholesterol homeostasis and deficiency in LDLR functions cause hypercholesterolemia. LDLR is a type I transmembrane protein that requires O-glycosylation for stable expression at the cell surface. It has previously been suggested that LDLR O-glycosylation is found N-terminal to the juxtamembrane region. Recently we identified O-glycosylation sites in the linker regions between the characteristic LDLR class A repeats in several LDLR-related receptors using the “SimpleCell” O-glycoproteome shotgun strategy. Herein, we have systematically characterized O-glycosylation sites on recombinant LDLR shed from HEK293 SimpleCells and CHO wild-type cells. We find that the short linker regions between LDLR class A repeats contain an evolutionarily conserved O-glycosylation site at position −1 of the first cysteine residue of most repeats, which in wild-type CHO cells is glycosylated with the typical sialylated core 1 structure. The glycosites in linker regions of LDLR class A repeats are conserved in LDLR from man to Xenopus and found in other homologous receptors. O-Glycosylation is controlled by a large family of polypeptide GalNAc transferases. Probing into which isoform(s) contributed to glycosylation of the linker regions of the LDLR class A repeats by in vitro enzyme assays suggested a major role of GalNAc-T11. This was supported by expression of LDLR in HEK293 cells, where knock-out of the GalNAc-T11 isoform resulted in the loss of glycosylation of three of four linker regions.  相似文献   

20.
Pupylation is a bacterial post-translational modification of target proteins on lysine residues with prokaryotic ubiquitin-like protein Pup. Pup-tagged substrates are recognized by a proteasome-interacting ATPase termed Mpa in Mycobacterium tuberculosis. Mpa unfolds pupylated substrates and threads them into the proteasome core particle for degradation. Interestingly, Mpa itself is also a pupylation target. Here, we show that the Pup ligase PafA predominantly produces monopupylated Mpa modified homogeneously on a single lysine residue within its C-terminal region. We demonstrate that this modification renders Mpa functionally inactive. Pupylated Mpa can no longer support Pup-mediated proteasomal degradation due to its inability to associate with the proteasome core. Mpa is further inactivated by rapid Pup- and ATPase-driven deoligomerization of the hexameric Mpa ring. We show that pupylation of Mpa is chemically and functionally reversible. Mpa regains its enzymatic activity upon depupylation by the depupylase Dop, affording a rapid and reversible activity control over Mpa function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号