首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of flapping flight in bats from an arboreal gliding ancestor appears on the surface to be a relatively simple transition. However, bat flight is a highly complex functional system from a morphological, physiological, and aerodynamic perspective, and the transition from a gliding precursor may involve functional discontinuities that represent evolutionary hurdles. In this review, I suggest a framework for a comprehensive treatment of the evolution of complex functional systems that emphasizes a mechanistic understanding of the initial state, the final state, and the proposed transitional states. In this case, bats represent the final state and extant mammalian gliders are used as a model for the initial state. To explore possible transitional states, I propose a set of criteria for evaluating hypotheses about the evolution of flight in vertebrates and suggest methods by which we can advance our understanding of the transition from gliding to flapping flight. Although it is impossible ever to know with certainty the sequence of events landing to flapping flight, the field of possibilities can be narrowed to those that maintain the functional continuity of the wing and result in improved aerodynamic performance across this transition. The fundamental differences between gliding and flapping flight should not necessarily be seen as evidence that this transition could not occur; rather, these differences point out compelling aspects of the aerodynamics of animal wings that require further investigation.  相似文献   

2.
Fin and body dimensions of six genera of flying fish (Exocoetidae) were examined to study variation in morphological parameters in relation to aerodynamics performance. The fins are modified as wings for gliding flight. Fin area and fin span increase with increasing body mass, whereas the percentage of wing area contributed by the pectoral fins and the percentage of the caudal fin area contributed by the hypocaudal lobe remain constant. The aerodynamic design of flying fish approximates the monoplane-biplane classification proposed by Breder (1930). Scaling relationships for wing loading and aspect ratio indicate that wing morphology in the Exocoetidae is more similar to birds and bats than to other gliders. The flight performance of flying fish is a high-speed glide with a relatively flat trajectory. The wing, as indicated by the aspect ratio, is designed for high lift with low drag characteristics.  相似文献   

3.
Numerical simulation is conducted to evaluate the wind and posture effects on the aerodynamic performance of a skier during the flight stage. Both steady and unsteady models are applied on a 2D geometry. Using the Fluent code, the fundamental equations of fluid flow are solved simultaneously. In particular we focus on the influence of wind speed and direction on aerodynamic forces with several different postures of the skier in steady modeling. For a chosen case, the unsteady models are used to predict the transient characteristics of streamline distributions and aerodynamic forces. It is found that the skier's postures, wind speed, and direction play a significant role. The wind condition affects the pressure force (the form drag) on the skier and makes it a resistance or thrust regarding wind directions. The optimized posture with a minimization of resistance under a facing wind is determined as a moving-forward body of the skier. The unsteady modeling reveals that the wake around the skier and aerodynamic forces are strongly dependent on time. This initial study not only provides a qualitative and theoretical basis for the athletes to understand the effects of wind and postures, and then to optimize their postures according to the wind condition during the flight stage of skiing, but also builds the foundation for the systematic study of skiing process with more advanced CFD models in the future.  相似文献   

4.
Gravity-defying Behaviors: Identifying Models for Protoaves   总被引:4,自引:2,他引:2  
Most current phylogenetic hypotheses based upon cladistic methodologyassert that birds are the direct descendants of derived maniraptorantheropod dinosaurs, and that the origin of avian flight necessarilydeveloped within a terrestrial context (i.e., from the "groundup"). Most theoretical aerodynamic and energetic models or chronologicallyappropriate fossil data do not support these hypotheses forthe evolution of powered flight. The more traditional modelfor the origin of flight derives birds from among small arborealearly Mesozoic archosaurs ("thecodonts"). According to thismodel, protoavian ancestors developed flight in the trees viaa series of intermediate stages, such as leaping, parachuting,gliding, and flapping. This model benefits from the assemblageof living and extinct arboreal vertebrates that engage in analogousnon-powered aerial activities using elevation as a source ofgravitational energy. Recent reports of "feathered theropods"notwithstanding, the evolution of birds from any known groupof maniraptoran theropods remains equivocal.  相似文献   

5.
Physical models, like mathematical models, are useful tools in biomechanical research. Physical models enable investigators to explore parameter space in a way that is not possible using a comparative approach with living organisms: parameters can be varied one at a time to measure the performance consequences of each, while values and combinations not found in nature can be tested. Experiments using physical models in the laboratory or field can circumvent problems posed by uncooperative or endangered organisms. Physical models also permit some aspects of the biomechanical performance of extinct organisms to be measured. Use of properly scaled physical models allows detailed physical measurements to be made for organisms that are too small or fast to be easily studied directly. The process of physical modelling and the advantages and limitations of this approach are illustrated using examples from our research on hydrodynamic forces on sessile organisms, mechanics of hydraulic skeletons, food capture by zooplankton and odour interception by olfactory antennules.  相似文献   

6.
Flight speed of seabirds in relation to wind speed and direction   总被引:5,自引:0,他引:5  
LARRY B. SPEAR  DAVID G. AINLEY 《Ibis》1997,139(2):234-251
We studied flight speed among all major seabird taxa. Our objectives were to provide further insight into dynamics of seabird flight and to develop allometric equations relating ground speed to wind speed and direction for use in adjusting seabird density estimates (calculated from surveys at sea) for the effect of bird movement. We used triangulation at sea to estimate ground speeds of 1562 individuals of 98 species. Species sorted into 25 “groups” based on similarity in ground speeds and taxonomy. After they were controlled for differences inground speed, the 25 groups sorted into eight major “types” on the basis of response to wind speed and wind direction. Wind speed and direction explained 1664% of the variation in ground speed among seabird types. For analyses on air speed (ground speed minus apparent wind speed), we divided the 25 groups according to four flight styles: gliding, flap-gliding, glide-flapping and flapping. Tailwind speed had little effect on air speed of gliders (albatrosses and large gadfly petrels), but species that more often used flapping decreased air speed with increase in tailwinds. All species increased air speeds significantly with increased headwinds. Gliders showed the greatest increase relative to increase in headwind speed and flappers the least. With tailwind flight, air speeds were greatest among species with highest wing loading for each flight style except gliders, which showed no relationship. For headwind flight, species with higher wing loading had higher air speeds; however, the relation was weaker in flappers compared with species using some amount of gliding. In contrast, analyses for air speed ratio (i.e. difference between air speed in acrosswinds [with no apparent wind] and speed flown into headwinds, or with tailwinds, divided by speed acrosswind) revealed that among species using some flapping, and with lower wing loading (surface-feeding shearwaters, small gadfly petrels, storm petrels, phalaropes, gulls and terns), adjusted air speeds more than those with higher wing loading (alcids, “diving shearwaters”, “Manx-type shearwaters”, pelicans, boobies and cormorants). As a result, most flappers of low wing loading flew much faster than Vmr (the most energy efficient air speed per distance flown) when flying into headwinds. We suggest that better-than-predicted gliding performance with acrosswinds and tailwinds of large gadfly petrels, compared with albatrosses, resulted from a different type of “soaring” not previously described in seabirds.  相似文献   

7.
Measuring the costs of soaring, gliding and flapping flight in raptors is challenging, but essential for understanding their ecology. Among raptors, vultures are scavengers that have evolved highly efficient soaring-gliding flight techniques to minimize energy costs to find unpredictable food resources. Using electrocardiogram, GPS and accelerometer bio-loggers, we report the heart rate (HR) of captive griffon vultures (Gyps fulvus and G. himalayensis) trained for freely-flying. HR increased three-fold at take-off (characterized by prolonged flapping flight) and landing (>300 beats-per-minute, (bpm)) compared to baseline levels (80–100 bpm). However, within 10 minutes after the initial flapping phase, HR in soaring/gliding flight dropped to values similar to baseline levels, i.e. slightly lower than theoretically expected. However, the extremely rapid decrease in HR was unexpected, when compared with other marine gliders, such as albatrosses. Weather conditions influenced flight performance and HR was noticeably higher during cloudy compared to sunny conditions when prolonged soaring flight is made easier by thermal ascending air currents. Soaring as a cheap locomotory mode is a crucial adaptation for vultures who spend so long on the wing for wide-ranging movements to find food.  相似文献   

8.
Conventional aerodynamic arguments suggest that possession of high aspect ratio wings will always improve the flight performance of glides. Drag and power will be minimized at intermediate flight speeds. It is shown, however, that as the aspect ratio increases, these minimum drag speeds are reduced, and will fall below the stall speed of the glider. This will happen at lower aspect ratios in small gliders, which operate at higher profile drag coefficients. Increasing the aspect ratio further will improve performance less than this analysis suggests.
A detailed analysis is developed to calculate the optimum shape of small gliders. Profile drag increases with aspect ratio, owing to the fall in the Reynolds number, while induced drag falls with increasing aspect ratio. Minimum drag will be encountered and hence the glide angle will be minimized at intermediate values of aspect ratio. Best glide angles are achieved at low speeds (high lift coefficients) and the optimum aspect ratio increases with the mass of the glider.
Small natural gliders possess large, low aspect ratio wings. The aspect ratios are generally somewhat below those which would produce the best glide angle at stall speed, but should give a reasonable performance over a range of speeds.  相似文献   

9.
As a postural behavior, gliding and soaring flight in birds requires less energy than flapping flight. Slow tonic and slow twitch muscle fibers are specialized for sustained contraction with high fatigue resistance and are typically found in muscles associated with posture. Albatrosses are the elite of avian gliders; as such, we wanted to learn how their musculoskeletal system enables them to maintain spread-wing posture for prolonged gliding bouts. We used dissection and immunohistochemistry to evaluate muscle function for gliding flight in Laysan and Black-footed albatrosses. Albatrosses possess a locking mechanism at the shoulder composed of a tendinous sheet that extends from origin to insertion throughout the length of the deep layer of the pectoralis muscle. This fascial "strut" passively maintains horizontal wing orientation during gliding and soaring flight. A number of muscles, which likely facilitate gliding posture, are composed exclusively of slow fibers. These include Mm. coracobrachialis cranialis, extensor metacarpi radialis dorsalis, and deep pectoralis. In addition, a number of other muscles, including triceps scapularis, triceps humeralis, supracoracoideus, and extensor metacarpi radialis ventralis, were found to have populations of slow fibers. We believe that this extensive suite of uniformly slow muscles is associated with sustained gliding and is unique to birds that glide and soar for extended periods. These findings suggest that albatrosses utilize a combination of slow muscle fibers and a rigid limiting tendon for maintaining a prolonged, gliding posture.  相似文献   

10.
The flying lizards of the genus Draco are among the most remarkable and successful clades of gliding vertebrates. Here, we evaluate the evolution of gliding in Draco and other lizards, describe the suite of morphological innovations that characterize Draco, discuss the ecological context of gliding in this genus, describe functions of their patagial membranes that are not related to gliding, and summarize the interspecific allometry of the Draco gliding apparatus, as well as the corresponding consequences for their now empirically quantified gliding performance. Several fossil reptilian lineages had morphologies similar to that of modern Draco, with patagial membranes supported by elongated ribs or rib-like dermal structures. Using Draco's snout-vent length/mass relationships, we provide improved estimates of wing loading for three of these fossil gliders (Icarosaurus seifkeri, Kuehneosaurus sp., Coelurosauravus elivensis) and then estimate absolute gliding performance for each taxon by extrapolating from Draco's wing loading/glide performance relationship. We find that I. seifkeri likely represented the best nonflapping terrestrial vertebrate glider yet described, whereas the larger Kuehneosaurus and Coelurosauravus probably required high descent velocities to achieve sufficient lift for gliding, with commensurately greater height loss with each glide.  相似文献   

11.
We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While M. gui lived after Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver.  相似文献   

12.
Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small “protowings”, and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an “avian” flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg performance, and that aerodynamically active, flapping wings might better be viewed as adaptations or exaptations for enhancing leg performance.  相似文献   

13.
The evolution of birds and feathers are examined in terms ofthe aerodynamic constraints imposed by the arboreal and cursorialmodels of flight evolution. The cursorial origin of flight isassociated with the putative coelurosaurian ancestry of birds.As presently known, coelurosaurs have a center of mass locatedin the pelvic region and an elongated pubis that is ventrallyor anteriorly directed. Both of these characteristics make itdifficult to postulate an origin of flight that would involvea gliding phase because the abdomen cannot be flattened intoan aerodynamic shape. Moreover, the cursorial model must counteractgravity using the hindlimb and, thus, selection for the powerrequirement for lift-off would not focus on the forelimb. Therefore,if the hypothesis proposing a coelurosaurian ancestry of birdsis to remain viable, it must be via an as yet undiscovered taxonthat is compatible with the morphological and aerodynamic constraintsimposed by flight evolution. The arboreal model, currently centers around non-dinosauriantaxa and is more parsimonious in that early archosaurs haveshort pubes that do not preclude an aerodynamic body profile.Moreover, the arboreal proavis uses gravity to create the airflowover the body surfaces and is, thus, energy efficient. Considerationof the initial aerodynamic roles of feathers and feather designare consistent with a precursory gliding phase. Whether avianancestry lies among coelurosaur theropods or earlier archosaurs,we must remain mindful of the complex aerodynamic dictates ofgliding and powered flight and avoid formalistic approachesthat co-opt sister taxa, with their known body form, as functionalancestors.  相似文献   

14.
Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine-let alone measure-optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability.  相似文献   

15.
Habitat corridors that facilitate functional connectivity are a fundamental component of wildlife conservation in fragmented landscapes. However, the landscape matrix separating suitable habitat is not uniformly impermeable to movement and management to increase matrix permeability could be an alternative means to maintain connectivity. Gliding mammals are particularly sensitive to fragmentation because their movements are constrained by glide distance thresholds. Populations of gliders in cities are at risk of being isolated by increasing habitat loss and urban development, yet little is known about how the urban matrix affects glider movement. Here we investigate how the level of urbanization and tree cover in the matrix influence matrix permeability to sugar gliders (Petaurus breviceps) within suburban forest reserves. Twenty‐two sugar gliders were radio‐tracked over winter and summer at four reserves. Boundary crossing behaviour was measured as the number of times each glider crossed into the matrix, and matrix permeability was determined as the maximum distance travelled by gliders into the matrix. The majority of gliders (81%) were located in the matrix at least once, and rates of boundary crossing were consistent across urbanization and tree cover levels. Matrix permeability was negatively affected by matrix urbanization, but not by matrix tree cover, and no interaction effects were found. Although distances travelled by gliders into the matrix did not exceed 180 m, they were comparable with typical movement distances by gliders in reserves. Our results demonstrate that the urban matrix can provide suitable habitat for gliding mammals to move and forage, but that increased urbanization may inhibit glider use of the matrix irrespective of tree cover. This finding has implications for conservation planning and suggests that structurally connected areas may not be used if movement behaviour is inhibited. Conversely, management of matrix permeability could be used to maintain connectivity without needing to construct physical corridors.  相似文献   

16.
A comprehensive computational fluid-dynamics-based study of a pleated wing section based on the wing of Aeshna cyanea has been performed at ultra-low Reynolds numbers corresponding to the gliding flight of these dragonflies. In addition to the pleated wing, simulations have also been carried out for its smoothed counterpart (called the 'profiled' airfoil) and a flat plate in order to better understand the aerodynamic performance of the pleated wing. The simulations employ a sharp interface Cartesian-grid-based immersed boundary method, and a detailed critical assessment of the computed results was performed giving a high measure of confidence in the fidelity of the current simulations. The simulations demonstrate that the pleated airfoil produces comparable and at times higher lift than the profiled airfoil, with a drag comparable to that of its profiled counterpart. The higher lift and moderate drag associated with the pleated airfoil lead to an aerodynamic performance that is at least equivalent to and sometimes better than the profiled airfoil. The primary cause for the reduction in the overall drag of the pleated airfoil is the negative shear drag produced by the recirculation zones which form within the pleats. The current numerical simulations therefore clearly demonstrate that the pleated wing is an ingenious design of nature, which at times surpasses the aerodynamic performance of a more conventional smooth airfoil as well as that of a flat plate. For this reason, the pleated airfoil is an excellent candidate for a fixed wing micro-aerial vehicle design.  相似文献   

17.
Ecology and biomechanics play central roles in the generation of phenotypic diversity. When unrelated taxa invade a similar ecological niche, biomechanical demands can drive convergent morphological transformations. Thus, examining convergence helps to elucidate the key catalysts of phenotypic change. Gliding mammals are often presented as a classic case of convergent evolution because they independently evolved in numerous clades, each possessing patagia (“wing” membranes) that generate lift during gliding. We use phylogenetic comparative methods to test whether the skeletal morphologies of the six clades of extant gliding mammals demonstrate convergence. Our results indicate that glider skeletons are convergent, with glider groups consistently evolving proportionally longer, more gracile limbs than arborealists, likely to increase patagial surface area. Nonetheless, we interpret gliders to represent incomplete convergence because (1) evolutionary model-fitting analyses do not indicate strong selective pressures for glider trait optima, (2) the three marsupial glider groups diverge rather than converge, and (3) the gliding groups remain separated in morphospace (rather than converging on a single morphotype), which is reflected by an unexpectedly high level of morphological disparity. That glider skeletons are morphologically diverse is further demonstrated by fossil gliders from the Mesozoic Era, which possess unique skeletal characteristics that are absent in extant gliders. Glider morphologies may be strongly influenced by factors such as body size and attachment location of patagia on the forelimb, which can vary among clades. Thus, convergence in gliders appears to be driven by a simple lengthening of the limbs, whereas additional skeletal traits reflect nuances of the gliding apparatus that are distinct among different evolutionary lineages. Our unexpected results add to growing evidence that incomplete convergence is prevalent in vertebrate clades, even among classic cases of convergence, and they highlight the importance of examining form-function relationships in light of phylogeny, biomechanics, and the fossil record.  相似文献   

18.
High-resolution Particle-Image Velocimetry (PIV) and time-resolved force measurements were performed to analyze the impact of the comb-like structure on the leading edge of barn owl wings on the flow field and overall aerodynamic performance. The Reynolds number was varied in the range of 40,000 to 120,000 and the range of angle of attack was 0° to 6° for the PIV and -15° to +20° for the force measurements to cover the full flight envelope of the owl. As a reference, a wind-tunnel model which possessed a geometry based on the shape of a typical barn owl wing without any owl-specific adaptations was built, and measurements were performed in the aforementioned Reynolds number and angle of attack: range. This clean wing model shows a separation bubble in the distal part of the wing at higher angles of attack. Two types of comb-like structures, i.e., artificial serrations, were manufactured to model the owl's leading edge with respect to its length, thickness, and material properties. The artificial structures were able to reduce the size of the separation region and additionally cause a more uniform size of the vortical structures shed by the separation bubble within the Reynolds number range investigated, resulting in stable gliding flight independent of the flight velocity. However, due to increased drag coefficients in conjunction with similar lift coefficients, the overall aerodynamic performance, i.e., lift-to-drag ratio is reduced for the serrated models. Nevertheless, especially at lower Reynolds numbers the stabilizing effect of the uniform vortex size outperforms the lower aerodynamic performance.  相似文献   

19.
We examine several aerodynamic and thermoregulatory hypotheses about possible adaptive factors in the evolution of wings from small winglets in insects. Using physical models of Paleozoic insects in a wind tunnel, we explore the potential effects of wings for increasing gliding distance, increasing dispersal distance during parachuting, improving attitude control or stability, and elevating body temperatures during thermoregulation. The effects of body size and shape, wing length, number, and venation, and meteorological conditions are considered. Hypotheses consistent with both fixed and moveable wing articulations are examined. Short wings have no significant effects on any of the aerodynamic characteristics, relative to wingless models, while large wings do have significant effects. In contrast, short wings have large thermoregulatory effects relative to wingless models, but further increases in wing length do not significantly affect thermoregulatory performance. At any body size, there is a wing length below which there are significant thermoregulatory effects of increasing wing length, and above which there are significant aerodynamic effects of increasing wing length. The relative wing length at which this transition occurs decreases with increasing body size. These results suggest that there could be no effective selection for increasing wing length in wingless or short-winged insects in relation to increased aerodynamic capacity. Our results are consistent with the hypothesis that insect wings initially served a thermoregulatory function and were used for aerodynamic functions only at larger wing lengths and/or body sizes. Thus, we propose that thermoregulation was the primary adaptive factor in the early evolution of wings that preadapted them for the subsequent evolution of flight. Our results illustrate an evolutionary mechanism in which a purely isometric change in body size may produce a qualitative change in the function of a given structure. We propose a hypothesis in which the transition from thermoregulatory to aerodynamic function for wings involved only isometric changes in body size and argue that changes in body form were not a prerequisite for this major evolutionary change in function.  相似文献   

20.
Summary Aerodynamic parameters are determined inPetarums from cine films of gliding flight which partly show an exact side view of gliding flight and landing approach. The outstretched gliding skin does not show any flutter movements. Its relative camber is about 0,1, its position of maximal camber, related to total length, is about of 0,4. Reynolds number is approximately 105. Gliding angles are high, i.e. 20° to 30° during gliding to touch down and up to 60° during aerodynamic braking just before touch down. Gliding numbers are accordingly high (bad). Aerodynamic angles of attack are high (45° to 60°), lying higher than the value of 35° at which the smallest (best) gliding numbers of 0,53 are indicated (gliding angle 28°) by aPetaurus preparation polar, determined in a wind tunnel.Petaurus is able to turn rolls and to fly curves by specific coordinations of flying skin, legs and tail, some of which are described and compared with the 1974 measurements on wind tunnel models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号