首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic cells control the initiation of DNA replication so that origins that have fired once in S phase do not fire a second time within the same cell cycle. Failure to exert this control leads to genetic instability. Here we investigate how rereplication is prevented in normal mammalian cells and how these mechanisms might be overcome during tumor progression. Overexpression of the replication initiation factors Cdt1 and Cdc6 along with cyclin A-cdk2 promotes rereplication in human cancer cells with inactive p53 but not in cells with functional p53. A subset of origins distributed throughout the genome refire within 2-4 hr of the first cycle of replication. Induction of rereplication activates p53 through the ATM/ATR/Chk2 DNA damage checkpoint pathways. p53 inhibits rereplication through the induction of the cdk2 inhibitor p21. Therefore, a p53-dependent checkpoint pathway is activated to suppress rereplication and promote genetic stability.  相似文献   

2.
The S‐phase checkpoint is a surveillance mechanism, mediated by the protein kinases Mec1 and Rad53 in the budding yeast Saccharomyces cerevisiae (ATR and Chk2 in human cells, respectively) that responds to DNA damage and replication perturbations by co‐ordinating a global cellular response necessary to maintain genome integrity. A key aspect of this response is the stabilization of DNA replication forks, which is critical for cell survival. A defective checkpoint causes irreversible replication‐fork collapse and leads to genomic instability, a hallmark of cancer cells. Although the precise mechanisms by which Mec1/Rad53 maintain functional replication forks are currently unclear, our knowledge about this checkpoint function has significantly increased during the last years. Focusing mainly on the advances obtained in S. cerevisiae, the present review will summarize our understanding of how the S‐phase checkpoint preserves the integrity of DNA replication forks and discuss the most recent findings on this topic.  相似文献   

3.
Cyclin D1 is required at high levels for passage through G1 phase but must be reduced to low levels during S phase to avoid the inhibition of DNA synthesis. This suppression requires the phosphorylation of Thr286, which is induced directly by DNA synthesis. Because the checkpoint kinase ATR is activated by normal replication as well as by DNA damage, its potential role in regulating cyclin D1 phosphorylation was tested. We found that ATR, activated by either UV irradiation or the topoisomerase IIβ binding protein 1 activator, promoted cyclin D1 phosphorylation. Small interfering RNA against ATR inhibited UV-induced Thr286 phosphorylation, together with that seen in normally cycling cells, indicating that ATR regulates cyclin D1 phosphorylation in normal as well as stressed cells. Following double-stranded DNA (dsDNA) breakage, the related checkpoint kinase ATM was also able to promote the phosphorylation of cyclin D1 Thr286. The relationship between these checkpoint kinases and cyclin D1 was extended when we found that normal cell cycle blockage in G1 phase observed following dsDNA damage was efficiently overcome when exogenous cyclin D1 was expressed within the cells. These results indicate that checkpoint kinases play a critical role in regulating cell cycle progression in normal and stressed cells by directing the phosphorylation of cyclin D1.  相似文献   

4.
Proteins belonging to the Tel2/Rad-5/Clk-2 family are conserved among eukaryotes and are involved in various cellular processes, such as cell proliferation, telomere maintenance, the biological clock, and the DNA damage checkpoint. However, the molecular mechanisms underlying the functions of these molecules remain largely unclear. Here we report that in the fission yeast, Schizosaccharomyces pombe, Tel2 is required for efficient phosphorylation of Mrc1, a mediator of DNA replication checkpoint signaling, and for activation of Cds1, a replication checkpoint kinase, when DNA replication is blocked by hydroxyurea. In fact, Tel2 is required for survival of replication fork arrest and for the replication checkpoint in cells lacking Chk1, another checkpoint kinase the role of which overlaps that of Cds1 in cell cycle arrest by replication block. In addition, Tel2 plays important roles in entry into S phase and in genome stability. Tel2 is essential for vegetative cell growth, and the tel2Delta strain accumulated cells with 1C DNA content after germination. In the absence of hydroxyurea, Tel2 is vital in the mutant lacking Swi1, a component of the replication fork protection complex, and multiple Rad22 DNA repair foci were frequently observed in Tel2-repressed swi1Delta cells especially at S phase. In contrast, the cds1Deltaswi1Delta mutant did not show such lethality. These results indicate that S. pombe Tel2 plays important roles in the Mrc1-mediated replication checkpoint as well as in the Cds1-independent regulation of genome integrity.  相似文献   

5.
Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1(-) fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G(2)/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin treatment. However, Hus1-deficient cells displayed a striking S-phase DNA damage checkpoint defect. Whereas wild-type cells transiently repressed DNA replication in response to benzo(a)pyrene dihydrodiol epoxide (BPDE), a genotoxin that causes bulky DNA adducts, Hus1-null cells maintained relatively high levels of DNA synthesis following treatment with this agent. However, when treated with DNA strand break-inducing agents such as ionizing radiation (IR), Hus1-deficient cells showed intact S-phase checkpoint responses. Conversely, checkpoint-mediated inhibition of DNA synthesis in response to BPDE did not require NBS1, a component of the IR-responsive S-phase checkpoint pathway. Taken together, these results demonstrate that Hus1 is required specifically for one of two separable mammalian checkpoint pathways that respond to distinct forms of genome damage during S phase.  相似文献   

6.
Mammalian DNA replication is an elegantly choreographed process in which multiple components are assembled at the origins to form the prereplication complex. Formation and activation of the prereplication complex requires coordinate actions of G1and S phase cyclin-dependent kinases. Cyclin E-CDK2 and cyclin A-CDK2, together with DBF4-CDC7, phosphorylate several components of the prereplication complex and replication machinery. In this review, we summarize the current understanding of the mechanism of initiation of DNA replication in mammalian cells. The roles of cyclin A/E-CDK2 complexes in driving replication, their relationship with other regulators of S phase, and their role in keeping replication to only once per cell cycle will be discussed. In addition, an important issue is the checks and balances that prevent inappropriate DNA replication, and how a breakdown in these checkpoints can lead to genomic instability and cancer. A critical mediator of these checkpoints, ATM, signals through a comprehensive network of proteins leading to CDK2 inhibition thus preventing DNA synthesis. This will be reviewed in addition to other mechanisms involved in the intra-S phase DNA damage checkpoint.  相似文献   

7.
DNA damage can occur due to environmental insults or intrinsic metabolic processes and is a major threat to genome stability. The DNA damage response is composed of a series of well coordinated cellular processes that include activation of the DNA damage checkpoint, transient cell cycle arrest, DNA damage repair, and reentry into the cell cycle. Here we demonstrate that mutant cells defective for TOR complex 2 (TORC2) or the downstream AGC-like kinase, Gad8, are highly sensitive to chronic replication stress but are insensitive to ionizing radiation. We show that in response to replication stress, TORC2 is dispensable for Chk1-mediated cell cycle arrest but is required for the return to cell cycle progression. Rad52 is a DNA repair and recombination protein that forms foci at DNA damage sites and stalled replication forks. TORC2 mutant cells show increased spontaneous nuclear Rad52 foci, particularly during S phase, suggesting that TORC2 protects cells from DNA damage that occurs during normal DNA replication. Consistently, the viability of TORC2-Gad8 mutant cells is dependent on the presence of the homologous recombination pathway and other proteins that are required for replication restart following fork replication stalling. Our findings indicate that TORC2 is required for genome integrity. This may be relevant for the growing amount of evidence implicating TORC2 in cancer development.  相似文献   

8.
Mammalian DNA replication is an elegantly choreographed process in which multiple components are assembled at the origins to form the prereplication complex. Formation and activation of the prereplication complex requires coordinate actions of G1 and S phase cyclin-dependent kinases. Cyclin E-CDK2 and cyclin A-CDK2, together with DBF4-CDC7, phosphorylate several components of the prereplication complex and replication machinery. In this review, we summarize the current understanding of the mechanism of initiation of DNA replication in mammalian cells. The roles of cyclin A/E-CDK2 complexes in driving replication, their relationship with other regulators of S phase, and their role in keeping replication to only once per cell cycle will be discussed. In addition, an important issue is the checks and balances that prevent inappropriate DNA replication, and how a breakdown in these checkpoints can lead to genomic instability and cancer. A critical mediator of these checkpoints, ATM, signals through a comprehensive network of proteins leading to CDK2 inhibition thus preventing DNA synthesis. This will be reviewed in addition to other mechanisms involved in the intra-S phase DNA damage checkpoint.  相似文献   

9.
The S phase checkpoint pathway preserves genome stability by protecting defective DNA replication forks, but the underlying mechanisms are still understood poorly. Previous work with budding yeast suggested that the checkpoint kinases Mec1 and Rad53 might prevent collapse of the replisome when nucleotide concentrations are limiting, thereby allowing the subsequent resumption of DNA synthesis. Here we describe a direct analysis of replisome stability in budding yeast cells lacking checkpoint kinases, together with a high-resolution view of replisome progression across the genome. Surprisingly, we find that the replisome is stably associated with DNA replication forks following replication stress in the absence of Mec1 or Rad53. A component of the replicative DNA helicase is phosphorylated within the replisome in a Mec1-dependent manner upon replication stress, and our data indicate that checkpoint kinases control replisome function rather than stability, as part of a multifaceted response that allows cells to survive defects in chromosome replication.  相似文献   

10.
Ren Y  Wu JR 《Cell research》2004,14(3):227-233
DNA replication is tightly regulated during the S phase of the cell cycle, and the activation of the intra-S-phase checkpoint due to DNA damage usually results in arrest of DNA synthesis. However, the molecular details about the correlation between the checkpoint and regulation of DNA replication are still unclear. To investigate the connections between DNA replication and DNA damage checkpoint, a DNA-damage reagent, tripchlorolide, was applied to CHO (Chinese ovary hamster) cells at early- or middle-stages of the S phase. The early-S-phase treatment with TC signifi-cantly delayed the progression of the S phase and caused the phosphorylation of the Chk 1 checkpoint protein, whereas the middle-S-phase treatment only slightly slowed down the progression of the S phase. Furthermore, the analysis of DNA replication patterns revealed that replication pattern II was greatly prolonged in the cells treated with the drug during the early-S phase, whereas the late-replication patterns of these cells were hardly detected, suggesting that the activation of the intra-S-phase checkpoint inhibits the late-origin firing of DNA replication. We conclude that cells at different stages of the S phase are differentially sensitive to the DNA-damage reagent, and the activation of the intra-S-phase checkpoint blocks the DNA replication progression in the late stage of S phase.  相似文献   

11.
12.
13.
The regulation of DNA replication initiation is well documented, for both unperturbed and damaged cells. The regulation of elongation, or fork velocity, however, has only recently been revealed with the advent of new techniques allowing us to view DNA replication at the single cell and single DNA molecule levels. Normally in S phase, the progression of replication forks and their stability are regulated by the ATR-Claspin-Chk1 pathway. We recently showed that replication fork velocity varies across the human genome in normal and cancer cells, but that the velocity of a given fork is positively correlated with the distance between origins on the same DNA fiber. Accordingly, in DNA replication-deficient Bloom’s syndrome cells, reduced fork velocity is associated with an increased density of replication origins. Replication elongation is also regulated in response to DNA damage. In human colon carcinoma cells treated with the topoisomerase I inhibitor camptothecin, DNA replication is inhibited both at the level of initiation and at the level of elongation through a Chk1-dependent checkpoint mechanism. Together, these new findings demonstrate that replication fork velocity (fork progression) is coordinated with inter-origin distance and that it can be actively slowed down by Chk1-dependent mechanisms in response to DNA damage. Thus, we propose that the intra-S phase checkpoint consist of at least three elements: (1) stabilization of damaged replication forks; (2) suppression of firing of late origins; and (3) arrests of normal ongoing forks to prevent further DNA lesions by replication of a damaged DNA template.  相似文献   

14.
Cancer is a genetic disease and carcinogenesis is the process whereby the relevant genetic alterations are acquired. Environmental carcinogens may damage DNA to induce mutations and chromosomal aberrations as permanent heritable changes in the genome that initiate carcinogenesis. For many carcinogens initiation of carcinogenesis requires the initiation of DNA replication suggesting that genetic alterations are fixed in the genome during replication of damaged DNA. It is of great interest to understand the mechanisms whereby carcinogen-induced damage to DNA causes mutations and chromosomal aberrations, and how cells may resist such events. It is clear now that cells express a complex repertoire of responses to DNA damage including several pathways of DNA repair and cell cycle checkpoints that protect against carcinogenesis. This commentary is concerned with the protective influence of DNA damage checkpoints that delay or arrest progression through the cell division cycle and especially with the responses of S phase cells to the environmental carcinogens UV and benzo[a]pyrene diolepoxide I (BPDE). Recent studies indicate that checkpoint responses may act at the very point of replication of damaged DNA to slow DNA chain elongation, inhibit replicon initiation, and suppress initiation of carcinogenesis.  相似文献   

15.
Tourrière H  Pasero P 《DNA Repair》2007,6(7):900-913
S phase is a period of great vulnerability for the genome of eukaryotic cells. Many complicated processes are undertaken during this critical phase of the cell cycle, including the complete unwinding and the duplication of enormously complex DNA molecules. During this process, replication forks frequently encounter obstacles that impede their progression. Arrested forks are unstable structures that have to be stabilized and restarted in order to prevent the formation of double-strand breaks and/or unscheduled homologous recombination. To this aim, cells have evolved complex surveillance mechanisms sensing DNA damage and replication stress. The past decade has seen a dramatic advance in our understanding of how these regulatory pathways act in response to exogenous replication stress. However, the mechanism by which fork integrity is maintained at natural replication-impeding sequences remains obscure. Here, we discuss recent findings about how checkpoint-dependent and -independent mechanisms cooperate to prevent genomic instability at stalled forks, both in normal S phase and in the presence of exogenous genotoxic stress.  相似文献   

16.
The genome integrity checkpoint is a conserved signaling pathway that is regulated in yeast by the Mec1 (homologous to human ATR) and Rad53 (homologous to human Chk1) kinases. The pathway coordinates a multifaceted response that allows cells to cope with DNA damage and DNA replication stress. The full activation of the checkpoint blocks origin firing, stabilizes replication forks, activates DNA repair proteins and may lead to senescence or apoptosisin higher eukaryotes. We have recently demonstrated that endogenous replication stress can activate the genome integrity checkpoint in budding yeast at a low level that does not go so far as to interfere with cell cycle progression, but it does activate DNA damage-inducible proteins. Here we demonstrate that the low level pre-activation of the checkpoint, either by endogenous replication stress or by the nucleotide-depleting drug hydroxyurea, can increase damage tolerance to multiple DNA-damaging agents. These results may provide new strategies for using the checkpoint to protect normal cells from genotoxic stress.  相似文献   

17.
18.
The checkpoint response to replication stress   总被引:1,自引:0,他引:1  
Genome instability is a hallmark of cancer cells, and defective DNA replication, repair and recombination have been linked to its etiology. Increasing evidence suggests that proteins influencing S-phase processes such as replication fork movement and stability, repair events and replication completion, have significant roles in maintaining genome stability. DNA damage and replication stress activate a signal transduction cascade, often referred to as the checkpoint response. A central goal of the replication checkpoint is to maintain the integrity of the replication forks while facilitating replication completion and DNA repair and coordinating these events with cell cycle transitions. Progression through the cell cycle in spite of defective or incomplete DNA synthesis or unrepaired DNA lesions may result in broken chromosomes, genome aberrations, and an accumulation of mutations. In this review we discuss the multiple roles of the replication checkpoint during replication and in response to replication stress, as well as the enzymatic activities that cooperate with the checkpoint pathway to promote fork resumption and repair of DNA lesions thereby contributing to genome integrity.  相似文献   

19.
Cells are continually exposed to genomic insults resulting from exogenous and endogenous damage as well as by challenges posed by DNA replication. In order to maintain genome integrity, the cells must monitor and coordinate different aspects of chromosome metabolism with cell cycle events that are performed in a predetermined order. Checkpoints are cellular surveillance and signaling pathways that coordinate these physiological responses, and growing evidence suggests that failure of these controls can lead to profound genome instability and genetic disorders. In this review, we focus on the different types of signals and mechanisms that contribute to the budding yeast checkpoint activation, the role of the activated replication checkpoint in stabilizing replication forks and in assisting different types of DNA repair and fork restart mechanisms, as well as on the ability of cells to recover from checkpoint arrest after repairing the lesions or adapt when faced with unrepairable DNA damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号