首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sister chromatid separation depends on the activity of separase, which in turn requires the proteolysis of its inhibitor, securin. It has been speculated that securin also supports the activation of separase. In this study, we found that PTTG1 was the major securin isoform expressed in most normal and cancer cell lines. Remarkably, a highly homologous isoform called PTTG2 was unable to interact with separase. Using chimeras between PTTG1 and PTTG2 and other approaches, we pinpointed a single amino acid that accounted for the loss of securin function in PTTG2. Mutation of the homologous position in PTTG1 (H134) switched PTTG1 from an inhibitor into an activator of separase. In agreement with this, PTTG1 lacking H134 was able to trigger premature sister chromatid separation. Conversely, introduction of H134 into PTTG2 is sufficient to allow it to bind separase. These data demonstrate that while the motif containing H134 has a strong affinity for separase and is involved in inhibiting it, another domain(s) is involved in activating separase and has a weaker affinity for it. Although PTTG2 lacks securin function, its differences from PTTG1 provide evidence of independent inhibitory and activating functions of PTTG1 on separase.  相似文献   

2.
垂体瘤转化基因1研究进展   总被引:1,自引:0,他引:1  
垂雄瘤转化基因1(PTTG1),也被称为分离酶抑制蛋白基因,是近几年从大鼠垂体肿瘤中发现的癌基因。它不但可以与分离酶结合,使分离酶失活,从而抑制姐妹染色单体的分离,还具有转录激活活性。已有的染色质免疫共沉淀结合芯片数据显示,PTTG1不仅可以直接调控基因的转录,也可以与其他蛋白,如PTTG1结合因子(PBF)、p53、Spl、上游刺激因子1(USF1)等相互作用来调控下游基因的转录。在NIH3T3细胞中,PTTG1激活c-Mvc的转录,增强NIH3T3细胞在裸鼠体内的成瘤能力。PTTG1也能激活肿瘤细胞中成纤维细胞生长因子2(FGF2)的转录,从而促进肿瘤血管生成。PTTG1结合p53、抑制p21表达、激活周期蛋白D3的能力,提示它在凋亡、细胞周期和衰老方面廿.发挥作用。另外,PTTG1在肿瘤转移和肝癌的发生发展中也发挥着重要作用。我们简要综述了PTTG1的靶基因,及其在肝癌及肿瘤转祷中的研究进展。  相似文献   

3.
4.
Cylindromatosis (CYLD), a deubiquitinase involved in inflammation and tumorigenesis via the modulation of cell signaling, has recently been identified as a critical regulator of microtubule dynamics. CYLD has also been shown to stimulate cell migration and thereby contribute to normal physiological processes. However, it remains elusive how the regulation of microtubule dynamic properties by CYLD is connected to its role in mediating cell migration. In this study, we performed yeast 2-hybrid screening with CYLD as bait and identified 7 CYLD-interacting proteins, including end-binding protein 1 (EB1). The CYLD–EB1 interaction was confirmed both in cells and in vitro, and these 2 proteins colocalized at the plus ends of microtubules. Interestingly, the association of CYLD with EB1 was significantly increased upon the stimulation of cell migration. CYLD coordinated with EB1 to orchestrate tail retraction, centrosome reorientation, and leading-edge microtubule stabilization in migratory cells. In addition, CYLD acted in concert with EB1 to regulate microtubule assembly in vitro, microtubule nucleation at the centrosome, and microtubule growth at the cell periphery. These data provide mechanistic insights into the actions of CYLD in the regulation of microtubule dynamics and cell migration. These findings also support the notion that coordinated actions of microtubule-binding proteins are critical for microtubule-mediated cellular events.  相似文献   

5.
Centrosomal proteins intricately regulate diverse microtubule-mediated cellular activities, including cell polarization and migration. However, the direct participation of these proteins in angiogenesis, which involves vascular endothelial cell migration from preexisting blood vessels, remains elusive. Here we show that the centrosomal protein Cep70 is necessary for angiogenic response in mice. This protein is also required for tube formation and capillary sprouting in vitro from vascular endothelial cells. Wound healing and transwell assays reveal that Cep70 plays a significant role in endothelial cell migration. Depletion of Cep70 results in severe defects in membrane ruffling and centrosome reorientation, indicating a requirement for this protein in cell polarization. In addition, Cep70 is critically involved in microtubule rearrangement in response to the migratory stimulus. Our data further demonstrate that Cep70 is important for Cdc42 and Rac1 activation to promote angiogenesis. These findings thus establish Cep70 as a crucial regulator of the angiogenic process and emphasize the significance of microtubule rearrangement and cell polarization and migration in angiogenesis.  相似文献   

6.
The pituitary transforming gene, PTTG, is abundantly expressed in endocrine neoplasms. PTTG has recently been recognized as a mammalian securin based on its biochemical homology to Pds1p. PTTG expression and intracellular localization were therefore studied during the cell cycle in human placental JEG-3 cells. PTTG mRNA and protein expressions were low at the G1/S border, gradually increased during S phase, and peaked at G2/M, but PTTG levels were attenuated as cells entered G1. In interphase cells, wild-type PTTG, an epitope-tagged PTTG, and a PTTG-EGFP conjugate all localized to both the nucleus and cytoplasm, but in mitotic cells, PTTG was not observed in the chromosome region. PTTG-EGFP colocalized with mitotic spindles in early mitosis and was degraded in anaphase. Intracellular fates of PTTG-EGFP and a conjugate of EGFP and a mutant inactivated PTTG devoid of an SH3-binding domain were observed by real-time visualization of the EGFP conjugates in live cells. The same cells were continuously observed as they progressed from G1/S border to S, G2/M, and G1. Most cells (67%) expressing PTTG-EGFP died by apoptosis, and few cells (4%) expressing PTTG-EGFP divided, whereas those expressing mutant PTTG-EGFP divided. PTTG-EGFP, as well as the mutant PTTG-EGFP, disappeared after cells divided. The results show that PTTG expression and localization are cell cycle-dependent and demonstrate that PTTG regulates endocrine tumor cell division and survival.  相似文献   

7.
Human securin, also known as human pituitary tumor-transforming gene 1 (pttg1), plays a key role in cell-cycle regulation. Two homologous genes, pttg2 and pttg3, have been identified although very little is known about their physiological function. In this study, we aimed at the characterization of these two pttg1 homologs. Real-time PCR analysis using specific probes demonstrated that Pttg2 is expressed at very low levels in various cell lines and tissues whereas Pttg3 was largely undetectable. We focused on the study of Pttg2 and found that, unlike PTTG1, PTTG2 lacks transactivation activity and does not bind to separase, making improbable a role in the control of sister chromatids separation. To further investigate the biological role of pttg2, we used short hairpin RNA inhibition of Pttg2 and found that cells with reduced Pttg2 levels assumed a rounded morphology compatible with a defect in cell adhesion and died by apoptosis in a p53- and p21-dependent manner. Using microarray technology, we generated a gene expression profile of Pttg2-depleted cells versus wild-type cells and found that knockdown of PTTG2 results in concomitant downregulation of E-cadherin and elevated vimentin levels, consistent with EMT induction. The observation of aberrant cellular behaviors in Pttg2-silenced cells reveals functions for pttg2 in cell adhesion and provides insights into a potential role in cell invasion.  相似文献   

8.
WASP family proteins are nucleation promoting factors that bind to and activate the Arp2/3 complex in order to stimulate nucleation of branched actin filaments. The WASP family consists of WASP, N-WASP, WAVE1-3, WASH, and the novel family members WHAMM and JMY. Each of the family members contains a C-terminus responsible for their nucleation promoting activity and unique N-termini that allow for them to be regulated in a spatiotemporal manner. Upon activation they reorganize the cytoskeleton for different cellular functions depending on their subcellular localization and regulatory protein interactions. Emerging evidence indicates that WASH, WHAMM, and JMY have functions that require the coordination of both actin polymerization and microtubule dynamics. Here, we review the mechanisms of regulation for each family member and their associated in vivo functions including cell migration, vesicle trafficking, and neuronal development.  相似文献   

9.
Pituitary tumor transforming gene (PTTG1, securin) is involved in cell-cycle control through inhibition of sister-chromatid separation. Elevated levels of PTTG1 were found to be associated with many different tumor types that might be involved in late stage tumor progression. However, the role of PTTG1 in early stage of tumorigenesis is unclear. Here we utilized the adenovirus expression system to deliver PTTG1 into normal human fibroblasts to evaluate the role of PTTG1 in tumorigenesis. Expressing PTTG1 in normal human fibroblasts inhibited cell proliferation. Several senescence-associated (SA) phenotypes including increased SA-β-galactosidase activities, decreased bromodeoxyuridine incorporation, and increased SA-heterochromatin foci formation were also observed in PTTG1-expressing cells, indicating that PTTG1 overexpression induced a senescent phenotype in normal cells. Significantly, the PTTG1-induced senescence is p53-dependent and telomerase-independent, which is distinctively different from that of replicative senescence. The mechanism of PTTG1-induced senescence was also analyzed. Consistent with its role in regulating sister-chromatid separation, overexpression of PTTG1 inhibited the activation of separase. Consequently, the numbers of cells with abnormal nuclei morphologies and chromosome separations were increased, which resulted in activation of the DNA damage response. Thus, we concluded that PTTG1 overexpression in normal human fibroblasts caused chromosome instability, which subsequently induced p53-dependent senescence through activation of DNA-damage response pathway.  相似文献   

10.
Wakida NM  Botvinick EL  Lin J  Berns MW 《PloS one》2010,5(12):e15462

Background

Establishing and maintaining polarization is critical during cell migration. It is known that the centrosome contains numerous proteins whose roles of organizing the microtubule network range include nucleation, stabilization and severing. It is not known whether the centrosome is necessary to maintain polarization. Due to its role as the microtubule organizing center, we hypothesize that the centrosome is necessary to maintain polarization in a migrating cell. Although there have been implications of its role in cell migration, there is no direct study of the centrosome''s role in maintaining polarization. In this study we ablate the centrosome by intracellular laser irradiation to understand the role of the centrosome in two vastly different cell types, human osteosarcoma (U2OS) and rat kangaroo kidney epithelial cells (PtK). The PtK cell line has been extensively used as a model for cytoskeletal dynamics during cell migration. The U2OS cell line serves as a model for a complex, single migrating cell.

Methodology/Principal Findings

In this study we use femtosecond near-infrared laser irradiation to remove the centrosome in migrating U2OS and PtK2 cells. Immunofluorescence staining for centrosomal markers verified successful irradiation with 94% success. A loss of cell polarization is observed between 30 and 90 minutes following removal of the centrosome. Changes in cell shape are correlated with modifications in microtubule and actin organization. Changes in cell morphology and microtubule organization were quantified revealing significant depolarization resulting from centrosome irradiation.

Conclusions/Significance

This study demonstrates that the centrosome is necessary for the maintenance of polarization during directed cell migration in two widely different cell types. Removal of the centrosome from a polarized cell results in the reorganization of the microtubule network into a symmetric non-polarized phenotype. These results demonstrate that the centrosome plays a critical role in the maintenance of cytoskeletal asymmetry during cell migration.  相似文献   

11.
12.
13.
Rho family GTPases, particularly Rac1 and Cdc42, are key regulators of cell polarization and directional migration. Adenomatous polyposis coli (APC) is also thought to play a pivotal role in polarized cell migration. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts directly with APC. IQGAP1 and APC localize interdependently to the leading edge in migrating Vero cells, and activated Rac1/Cdc42 form a ternary complex with IQGAP1 and APC. Depletion of either IQGAP1 or APC inhibits actin meshwork formation and polarized migration. Depletion of IQGAP1 or APC also disrupts localization of CLIP-170, a microtubule-stabilizing protein that interacts with IQGAP1. Taken together, these results suggest a model in which activation of Rac1 and Cdc42 in response to migration signals leads to recruitment of IQGAP1 and APC which, together with CLIP-170, form a complex that links the actin cytoskeleton and microtubule dynamics during cell polarization and directional migration.  相似文献   

14.
From an insertional mutagenesis screen, we isolated a novel gene, mto2+, involved in microtubule organization in fission yeast. mto2Delta strains are viable but exhibit defects in interphase microtubule nucleation and in formation of the postanaphase microtubule array at the end of mitosis. The mto2Delta defects represent a subset of the defects displayed by cells deleted for mto1+ (also known as mod20+ and mbo1+), a centrosomin-related protein required to recruit the gamma-tubulin complex to cytoplasmic microtubule-organizing centers (MTOCs). We show that mto2p colocalizes with mto1p at MTOCs throughout the cell cycle and that mto1p and mto2p coimmunoprecipitate from cytoplasmic extracts. In vitro studies suggest that mto2p binds directly to mto1p. In mto2Delta mutants, although some aspects of mto1p localization are perturbed, mto1p can still localize to spindle pole bodies and the cell division site and to "satellite" particles on interphase microtubules. In mto1Delta mutants, localization of mto2p to all of these MTOCs is strongly reduced or absent. We also find that in mto2Delta mutants, cytoplasmic forms of the gamma-tubulin complex are mislocalized, and the gamma-tubulin complex no longer coimmunoprecipitates with mto1p from cell extracts. These experiments establish mto2p as a major regulator of mto1p-mediated microtubule nucleation by the gamma-tubulin complex.  相似文献   

15.
Hepatocytes are epithelial cells whose apical poles constitute the bile canaliculi. The establishment and maintenance of canalicular poles is a finely regulated process that dictates the efficiency of primary bile secretion. Protein kinase A (PKA) modulates this process at different levels. AKAP350 is an A-kinase anchoring protein that scaffolds protein complexes involved in modulating the dynamic structures of the Golgi apparatus and microtubule cytoskeleton, facilitating microtubule nucleation at this organelle. In this study, we evaluated whether AKAP350 is involved in the development of bile canaliculi-like structures in hepatocyte derived HepG2 cells. We found that AKAP350 recruits PKA to the centrosomes and Golgi apparatus in HepG2 cells. De-localization of AKAP350 from these organelles led to reduced apical cell polarization. A decrease in AKAP350 expression inhibited the formation of canalicular structures and impaired F-actin organization at canalicular poles. Furthermore, loss of AKAP350 expression led to diminished polarized expression of the p-glycoprotein (MDR1/ABCB1) at the apical "canalicular" membrane. AKAP350 knock down effects on canalicular structures formation and actin organization could be mimicked by inhibition of Golgi microtubule nucleation by depletion of CLIP associated proteins (CLASPs). Our data reveal that AKAP350 participates in mechanisms which determine the development of canalicular structures as well as accurate canalicular expression of distinct proteins and actin organization, and provide evidence on the involvement of Golgi microtubule nucleation in hepatocyte apical polarization.  相似文献   

16.
In addition to their differentiation potential, self-renewal capability is an important characteristic of stem cells. The limited self-renewal activity of mesenchymal stem cells is the greatest obstacle to the application of stem cell therapy in regenerative medicine. The human TERT gene enhances the self-renewal of MSCs, but the mechanism of self-renewal and the interactions among TERT-gene-related molecules remain unknown. The objectives of this study were to generate immortalized MSCs derived from MSCs isolated from placenta (naive) by human TERT gene transfection with the AMAXA gene delivery system, to compare their characteristics, and to investigate whether increased TERT expression affected the pituitary tumor transforming gene (PTTG1; also known as securin), which is involved in chromosome segregation during mitosis. TERT-immortalized cells (TERT+) with a prolonged life span displayed high PTTG1 expression. TERT+ cells also retained the stemness capacity and multipotency of naive cells and displayed high PTTG1 expression. However, down-regulation of PTTG1 by treatment with short interfering RNA induced cell senescence and decreased telomerase activity. Moreover, TERT bound to PTTG1 formed complexes with chaperones such as Ku70 and heat shock protein 90. Thus, placental MSCs immortalized by TERT gene transfection display differentiation potential and exhibit enhanced self-renewal through a balanced interaction of PTTG1 and chaperones. The interaction between TERT and PTTG1 by association of Ku70 might be important for the enhancement of the limited self-renewal activity of MSCs and for understanding the regulatory mechanisms of self-renewal.  相似文献   

17.
Proper centrosome positioning is critical for many cellular functions, such as cell migration and maintenance of polarity. During wound healing, fibroblasts orient their centrosomes such that they face the wound edge. The centrosome orientation determines the direction of cells’ migration so that they can close the wound effectively. In this study, we investigated the regulation of centrosome polarization and have identified the phosphatase POPX2 as an important regulator of centrosome orientation. We found that POPX2 inhibits centrosome centration, but not rearward nuclear movement, by regulating multiple proteins that function in centrosome positioning. High POPX2 levels result in reduced motility of the kinesin-2 motor, which, in turn, inhibits the transport of N-cadherin to the cell periphery and cell junctions. Loss of N-cadherin localization to the cell membrane affects the localization of focal adhesions and perturbs CDC42-Par6/PKCζ signaling. In addition, overexpression of POPX2 also results in a loss of Par3 localization to the cell periphery and reduced levels of LIC2 (dynein light intermediate chain 2), leading to defects in microtubule tethering and dynamics at cell-cell contacts. Therefore, POPX2 functions as a regulator of signaling pathways to modulate the positioning of centrosome in fibroblast during wound healing.  相似文献   

18.
PTTG1, also known as securin, is an inactivating partner of separase, the major effector for chromosome segregation during mitosis. At the metaphase-to-anaphase transition, securin is targeted for proteasomal destruction by the anaphase-promoting complex or cyclosome, allowing activation of separase. In addition, securin is overexpressed in metastatic or genomically instable tumors, suggesting a relevant role for securin in tumor progression. Stability of securin is regulated by phosphorylation; some phosphorylated forms are degraded out of mitosis, by the action of the SKP1-CUL1-F-box protein (SCF) complex. The kinases targeting securin for proteolysis have not been identified, and mechanistic insight into the cause of securin accumulation in human cancers is lacking. Here, we demonstrate that glycogen synthase kinase-3β (GSK3β) phosphorylates securin to promote its proteolysis via SCF(βTrCP) E3 ubiquitin ligase. Importantly, a strong correlation between securin accumulation and GSK3β inactivation was observed in breast cancer tissues, indicating that GSK3β inactivation may account for securin accumulation in breast cancers.  相似文献   

19.
20.
Long noncoding RNAs (lncRNAs) play critical factors in tumor progression and are ectopically expressed in malignant tumors. Until now, lncRNA pituitary tumor-transforming 3, pseudogene (PTTG3P) biological function in colorectal cancer (CRC) further needs to be clarified. qRT-PCR was used to measure the PTTG3P level and CCK-8, glucose uptake, lactate assay, adenosine triphosphate (ATP) assay, extracellular acidification rate (ECAR) assay, and xenograft mice model were adopted to evaluate the glycolysis and proliferation, and macrophage polarization were determined in CRC cells. Xenograft experiments were utilized to analyze tumor growth. Ectopic expression of PTTG3P was involved in CRC and related to dismal prognosis. Through gain- and loss-of-function approaches, PTTG3P enhanced cell proliferation and glycolysis through YAP1. Further, LDHA knockdown or glycolysis inhibitor (2-deoxyglucose (2-DG), 3-BG) recovered from PTTG3P-induced proliferation. And PTTG3P overexpression could facilitate M2 polarization of macrophages. Silenced PTTG3P decreased the level of inflammatory cytokines TNF-α, IL-1β and IL-6, and low PTTG3P expression related with CD8+ T, NK, and TFH cell infiltration. Besides, hypoxia-inducible factor-1α (HIF1A) could increase PTTG3P expression by binding to the PTTG3P promoter region. Hypoxia-induced PTTG3P contributes to glycolysis and M2 phenotype of macrophage, which proposes a novel approach for clinical treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号