首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1994,126(5):1231-1240
Vinculin, a major structural component of vertebrate cell-cell and cell- matrix adherens junctions, has been found to interact with several other junctional components. In this report, we have identified and characterized a binding site for filamentous actin. These results included studies with gizzard vinculin, its proteolytic head and tail fragments, and recombinant proteins containing various gizzard vinculin sequences fused to the maltose binding protein (MBP) of Escherichia coli. In cosedimentation assays, only the vinculin tail sequence mediated a direct interaction with actin filaments. The binding was saturable, with a dissociation constant value in the micromolar range. Experiments with deletion clones localized the actin-binding domain to a region confined by residues 893-1016 in the 170-residue-long carboxyterminal segment, while the proline-rich hinge connecting the globular head to the rodlike tail was not required for this interaction. In fixed and permeabilized cells (cell models), as well as after microinjection, proteins containing the actin-binding domain specifically decorated stress fibers and the cortical network of fibroblasts and epithelial cells, as well as of brush border type microvilli. These results corroborated the sedimentation experiments. Our data support and extend previous work showing that vinculin binds directly to actin filaments. They are consistent with a model suggesting that in adhesive cells, the NH2-terminal head piece of vinculin directs this molecule to the focal contact sites, while its tail segment causes bundling of the actin filament ends into the characteristic spear tip-shaped structures.  相似文献   

2.
《The Journal of cell biology》1994,126(6):1445-1453
Ezrin, previously also known as cytovillin, p81, and 80K, is a cytoplasmic protein enriched in microvilli and other cell surface structures. Ezrin is postulated to have a membrane-cytoskeleton linker role. Recent findings have also revealed that the NH2-terminal domain of ezrin is associated with the plasma membrane and the COOH-terminal domain with the cytoskeleton (Algrain, M., O. Turunen, A. Vaheri, D. Louvard, and M. Arpin. 1993. J. Cell Biol. 120: 129-139). Using bacterially expressed fragments of ezrin we now demonstrate that ezrin has an actin-binding capability. We used glutathione-S-transferase fusion proteins of truncated ezrin in affinity chromatography to bind actin from the cell extract or purified rabbit muscle actin. We detected a binding site for filamentous actin that was localized to the COOH-terminal 34 amino acids of ezrin. No binding of monomeric actin was detected in the assay. The region corresponding to the COOH- terminal actin-binding site in ezrin is highly conserved in moesin, actin-capping protein radixin and EM10 protein of E. multilocularis, but not in merlin/schwannomin. Consequently, this site is a potential actin-binding site also in the other members of the protein family. Furthermore, the actin-binding site in ezrin shows sequence homology to the actin-binding site in the COOH terminus of the beta subunit of the actin-capping protein CapZ and one of the potential actin-binding sites in myosin heavy chain. The actin-binding capability of ezrin supports its proposed role as a membrane-cytoskeleton linker.  相似文献   

3.
The actin filament-severing domain of plasma gelsolin   总被引:20,自引:10,他引:10       下载免费PDF全文
Gelsolin, a multifunctional actin-modulating protein, has two actin-binding sites which may interact cooperatively. Native gelsolin requires micromolar Ca2+ for optimal binding of actin to both sites, and for expression of its actin filament-severing function. Recent work has shown that an NH2-terminal chymotryptic 17-kD fragment of human plasma gelsolin contains one of the actin-binding sites, and that this fragment binds to and severs actin filaments weakly irrespective of whether Ca2+ is present. The other binding site is Ca2+ sensitive, and is found in a chymotryptic peptide derived from the COOH-terminal two-thirds of plasma gelsolin; this fragment does not sever F-actin or accelerate the polymerization of actin. This paper documents that larger thermolysin-derived fragments encompassing the NH2-terminal half of gelsolin sever actin filaments as effectively as native plasma gelsolin, although in a Ca2+-insensitive manner. This result indicates that the NH2-terminal half of gelsolin is the actin-severing domain. The stringent Ca2+ requirement for actin severing found in intact gelsolin is not due to a direct effect of Ca2+ on the severing domain, but indirectly through an effect on domains in the COOH-terminal half of the molecule to allow exposure of both actin-binding sites.  相似文献   

4.
The mutual effect of three actin-binding proteins (α-actinin, calponin and filamin) on the binding to actin was analyzed by means of differential centrifugation and electron microscopy. In the absence of actin α-actinin, calponin and filamin do not interact with each other. Calponin and filamin do not interfere with each other in the binding to actin bundles. Slight interference was observed in the binding of α-actinin and calponin to actin bundles. Higher ability of calponin to depress α-actinin binding can be due to the higher stoichiometry calponin/actin in the complexes formed. The largest interference was observed in the pair filamin–α-actinin. These proteins interfere with each other in the binding to the bundled actin filaments; however, neither of them completely displaced another protein from its complexes with actin. The structure of actin bundles formed in the presence of any one actin-binding protein was different from that observed in the presence of binary mixtures of two actin-binding proteins. In the case of calponin or its binary mixtures with α-actinin or filamin the total stoichiometry actin-binding protein/actin was larger than 0.5. This means that α-actinin, calponin and filamin may coexist on actin filaments and more than mol of any actin-binding protein is bound per two actin monomers. This may be important for formation of different elements of cytoskeleton.  相似文献   

5.
Myosin binding protein C (MyBPC) is a multidomain protein associated with the thick filaments of striated muscle. Although both structural and regulatory roles have been proposed for MyBPC, its interactions with other sarcomeric proteins remain obscure. The current study was designed to examine the actin-binding properties of MyBPC and to define MyBPC domain regions involved in actin interaction. Here, we have expressed full-length mouse cardiac MyBPC (cMyBPC) in a baculovirus system and shown that purified cMyBPC binds actin filaments with an affinity of 4.3 ± 1.1 μM and a 1:1 molar ratio with regard to an actin protomer. The actin binding by cMyBPC is independent of protein phosphorylation status and is not significantly affected by the presence of tropomyosin and troponin on the actin filament. In addition, cMyBPC-actin interaction is not modulated by calmodulin. To determine the region of cMyBPC that is responsible for its interaction with actin, we have expressed and characterized five recombinant proteins encoding fragments of the cMyBPC sequence. Recombinant N-terminal fragments such as C0-C1, C0-C4, and C0-C5 cosediment with actin in a linear, nonsaturable manner. At the same time, MyBPC fragments lacking either the C0-C1 or C0-C4 region bind F-actin with essentially the same properties as full-length protein. Together, our results indicate that cMyBPC interacts with actin via a single, moderate affinity site localized to the C-terminal region of the protein. In contrast, certain basic regions of the N-terminal domains of MyBPC may act as small polycations and therefore bind actin via nonspecific electrostatic interactions.  相似文献   

6.
A Weber  M Pring  S L Lin  J Bryan 《Biochemistry》1991,30(38):9327-9334
Gelsolin is a bivalent Ca(2+)-modulated actin-binding protein that severs, nucleates, and caps filaments. In order to gain a better understanding of the capping mechanism we have studied N- and C-terminal gelsolin fragments, 14NT and 41CT, each of which contains a single functional actin-binding site. The very tight binding measured between gelsolin and the barbed filament end requires gelsolin to greatly decrease the dissociation rate constant of the terminal actin from this end. A mechanism that could account for the observed decrease in dissociation is one in which gelsolin links two actin monomers so that they dissociate more slowly as a dimer. This cannot be the only mechanism, however, since, as shown here, 14NT and 41CT, fragments with single actin-binding sites, decrease the dissociation rate of the capped terminal actin molecule. The observations suggest that these fragments induce a conformational change in the actin monomer that either increases the affinity or alters the kinetics of the terminal actin-actin bond. The available data argue for strengthening of the terminal actin-actin bond.  相似文献   

7.
The binding of caldesmon and its actin-binding fragments to actin was studied by using peptide antibodies directed against two actin sites implicated in actomyosin interactions. Antibodies against residues 1-7 on skeletal alpha-actin strongly inhibited the binding of caldesmon to actin and perturbed to a smaller extent the interaction between actin and the actin binding fragments. Carbodiimide coupling of ethylenediamine to the NH2-terminal acidic residues on actin inhibited the binding of caldesmon and its fragments to actin to a similar extent as the (residues 1-7) antibodies. Antibodies against residues 18-28 showed only limited competition with caldesmon for the binding to actin. These results lead to the following conclusions. (i) The NH2-terminal residues on actin play an important role in the binding of caldesmon to actin, (ii) residues 18-28 on actin do not form a major caldesmon interaction site, and (iii) the actin-binding fragments do not contain the full actin-binding interface. These conclusions and other literature data suggest that caldesmon regulates the actomyosin ATPase by competing with myosin.ATP for the NH2-terminal segment on actin.  相似文献   

8.
Cofilin is an actin depolymerizing protein found widely distributed in animals and plants. We have used electron cryomicroscopy and helical reconstruction to identify its binding site on actin filaments. Cofilin binds filamentous (F)-actin cooperatively by bridging two longitudinally associated actin subunits. The binding site is centered axially at subdomain 2 of the lower actin subunit and radially at the cleft between subdomains 1 and 3 of the upper actin subunit. Our work has revealed a totally unexpected (and unique) property of cofilin, namely, its ability to change filament twist. As a consequence of this change in twist, filaments decorated with cofilin have much shorter ‘actin crossovers' (~75% of those normally observed in F-actin structures). Although their binding sites are distinct, cofilin and phalloidin do not bind simultaneously to F-actin. This is the first demonstration of a protein that excludes another actin-binding molecule by changing filament twist. Alteration of F-actin structure by cofilin/ADF appears to be a novel mechanism through which the actin cytoskeleton may be regulated or remodeled.  相似文献   

9.
Gelsolin is a Ca2+- and polyphosphoinositide-modulated actin-binding protein which severs actin filaments, nucleates actin assembly, and caps the "barbed" end of actin filaments. Proteolytic cleavage analysis of human plasma gelsolin has shown that the NH2-terminal half of the molecule severs actin filaments almost as effectively as native gelsolin in a Ca2+-insensitive but polyphosphoinositide-inhibited manner. Further proteolysis of the NH2-terminal half generates two unique fragments (CT14N and CT28N), which have minimal severing activity. Under physiological salt conditions, CT14N binds monomeric actin coupled to Sepharose but CT28N does not. In this paper, we show that CT28N binds stoichiometrically and with high affinity to actin subunits in filaments, suggesting that it preferentially recognizes the conformation of polymerized actin. Analysis of the binding data shows that actin filaments have one class of CT28N binding sites with Kd = 2.0 X 10(-7) M, which saturates at a CT28N/actin subunit ratio of 0.8. Binding of CT28N to actin filaments is inhibited by phosphatidylinositol 4,5-bisphosphate micelles. In contrast, neither CT14N nor another actin-binding domain located in the COOH-terminal half of gelsolin form stable stoichiometric complexes with actin along the filaments, and their binding to actin monomers is not inhibited by PIP2. Based on these observations, we propose that CT28N is the polyphosphoinositide-regulated actin-binding domain which allows gelsolin to bind to actin subunits within a filament before serving.  相似文献   

10.
Latrunculin A is used extensively as an agent to sequester monomeric actin in living cells. We hypothesize that additional activities of latrunculin A may be important for its biological activity. Our data are consistent with the formation of a 1:1 stoichiometric complex with an equilibrium dissociation constant of 0.2 to 0.4 micrometer and provide no evidence that the actin-latrunculin A complex participates in the elongation of actin filaments. Profilin and latrunculin A bind independently to actin, whereas binding of thymosin beta(4) to actin is inhibited by latrunculin A. Potential implications of this differential effect on actin-binding proteins are discussed. From a structural perspective, if latrunculin A binds to actin at a site that sterically influences binding by thymosin beta(4), then the observation that latrunculin A inhibits nucleotide exchange on actin implies an allosteric effect on the nucleotide binding cleft. Alternatively, if, as previously postulated, latrunculin A binds in the nucleotide cleft of actin, then its ability to inhibit binding by thymosin beta(4) is a surprising result that suggests that significant allosteric changes affect the thymosin beta(4) binding site. We show that latrunculin A and actin form a crystalline structure with orthorhombic space group P2(1)2(1)2(1) and diffraction to 3.10 A. A high resolution structure with optimized crystallization conditions should provide insight regarding these remarkable allosteric properties.  相似文献   

11.
Myosin binding to actin. Structural analysis using myosin fragments   总被引:2,自引:0,他引:2  
The actin-binding property of the myosin head 20 K (K = 10(3) Mr) fragment has been examined by a structural assay. A new fragment is produced by digestion of scallop myosin synthetic filaments with a lysine-specific protease. This fragment consists of the rod together with two "nubs" corresponding to the 20 K fragment, which retain both the regulatory and essential light chains. Myosin filaments, digested for different lengths of time, were mixed with F-actin and visualized by electron microscopy after negative staining. When the head is cleaved, but the head fragments remain associated, the filaments bind actin in an ATP-sensitive manner. Filaments made primarily of the nub-containing fragments, however, bind actin very poorly. In addition, electron microscopic characterization of actin-binding by the isolated tryptic 20 K fragment from chicken myosin indicates that binding of this fragment to actin is probably non-specific. These results suggest that interactions between the 20 K region and the other peptides in the head are essential for actin-binding.  相似文献   

12.
Formin family proteins coordinate actin filaments and microtubules. The mechanisms by which formins bind and regulate the actin cytoskeleton have recently been well defined. However, the molecular mechanism by which formins coordinate actin filaments and microtubules remains poorly understood. We demonstrate here that Isoform-Ib of the Formin-1 protein (Fmn1-Ib) binds to microtubules via a protein domain that is physically separated from the known actin-binding domains. When expressed at low levels in NIH3T3 fibroblasts, Fmn1-Ib protein localizes to cytoplasmic filaments that nocodazole disruption confirmed as interphase microtubules. A series of progressive mutants of Fmn1-Ib demonstrated that deletion of exon-2 caused dissociation from microtubules and a stronger association with actin membrane ruffles. The exon-2-encoded peptide binds purified tubulin in vitro and is also sufficient to localize GFP to microtubules. Exon-2 does not contain any known formin homology domains. Deletion of exon 5, 7, 8, the FH1 domain or FH2 domain did not affect microtubule binding. Thus, our results indicate that exon-2 of Fmn1-Ib encodes a novel microtubule-binding peptide. Since formin proteins associate with actin filaments through the FH1 and FH2 domains, binding to interphase microtubules through this exon-2-encoded domain provides a novel mechanism by which Fmn1-Ib could coordinate actin filaments and microtubules.  相似文献   

13.
Toxoplasma gondii is a protozoan parasite belonging to the phylum Apicomplexa. Parasites in this phylum utilize a unique process of motility termed gliding, which is dependent on parasite actin filaments. Surprisingly, 98% of parasite actin is maintained as G-actin, suggesting that filaments are rapidly assembled and turned over. Little is known about the regulated disassembly of filaments in the Apicomplexa. In higher eukaryotes, the related actin depolymerizing factor (ADF) and cofilin proteins are essential regulators of actin filament turnover. ADF is one of the few actin-binding proteins conserved in apicomplexan parasites. In this study we examined the mechanism by which T. gondii ADF (TgADF) regulates actin filament turnover. Unlike other members of the ADF/cofilin (AC) family, apicomplexan ADFs lack key F-actin binding sites. Surprisingly, this promotes their enhanced disassembly of actin filaments. Restoration of the C-terminal F-actin binding site to TgADF stabilized its interaction with filaments but reduced its net filament disassembly activity. Analysis of severing activity revealed that TgADF is a weak severing protein, requiring much higher concentrations than typical AC proteins. Investigation of TgADF interaction with T. gondii actin (TgACT) revealed that TgADF disassembled short TgACT oligomers. Kinetic and steady-state polymerization assays demonstrated that TgADF has strong monomer-sequestering activity, inhibiting TgACT polymerization at very low concentrations. Collectively these data indicate that TgADF promoted the efficient turnover of actin filaments via weak severing of filaments and strong sequestering of monomers. This suggests a dual role for TgADF in maintaining high G-actin concentrations and effecting rapid filament turnover.  相似文献   

14.
The actin depolymerizing factor (ADF)/cofilin family of proteins interact with actin monomers and filaments in a pH-sensitive manner. When ADF/cofilin binds F-actin it induces a change in the helical twist and fragmentation; it also accelerates the dissociation of subunits from the pointed ends of filaments, thereby increasing treadmilling or depolymerization. Using site-directed mutagenesis we characterized the two actin-binding sites on human cofilin. One target site was chosen because we previously showed that the villin head piece competes with ADF for binding to F-actin. Limited sequence homology between ADF/cofilin and the part of the villin headpiece essential for actin binding suggested an actin-binding site on cofilin involving a structural loop at the opposite end of the molecule to the alpha-helix already implicated in actin binding. Binding through the alpha-helix is primarily to monomeric actin, whereas the loop region is specifically involved in filament association. We have characterized the actin binding properties of each site independently of the other. Mutation of a single lysine residue in the loop region abolishes binding to filaments, but not to monomers. Using the mutation analogous to the phosphorylated form of cofilin (S3D), we show that filament binding is inhibited at physiological ionic strength but not under low salt conditions. At low ionic strength, this mutant induces both the twist change and fragmentation characteristic of wild-type cofilin, but does not activate subunit dissociation. The results suggest a two-site binding to filaments, initiated by association through the loop site, followed by interaction with the adjacent subunit through the "helix" site at the opposite end of the molecule. Together, these interactions induce twist and fragmentation of filaments, but the twist change itself is not responsible for the enhanced rate of actin subunit release from filaments.  相似文献   

15.
Lasp-2 binds to actin filaments and concentrates in the actin bundles of filopodia and lamellipodia in neural cells and focal adhesions in fibroblastic cells. Lasp-2 has three structural regions: a LIM domain, a nebulin-repeat region, and an SH3 domain; however, the region(s) responsible for its interactions with actin filaments and focal adhesions are still unclear. In this study, we revealed that the N-terminal fragment from the LIM domain to the first nebulin-repeat module (LIM-n1) retained actin-binding activity and showed a similar subcellular localization to full-length lasp-2 in neural cells. The LIM domain fragment did not interact with actin filaments or localize to actin filament bundles. In contrast, LIM-n1 showed a clear subcellular localization to filopodial actin bundles. Although truncation of the LIM domain caused the loss of F-actin binding activity and the accumulation of filopodial actin bundles, these truncated fragments localized to focal adhesions. These results suggest that lasp-2 interactions with actin filaments are mediated through the cooperation of the LIM domain and the first nebulin-repeat module in vitro and in vivo. Actin filament binding activity may be a major contributor to the subcellular localization of lasp-2 to filopodia but is not crucial for lasp-2 recruitment to focal adhesions.  相似文献   

16.
The conformational elasticity of the actin cytoskeleton is essential for its versatile biological functions. Increasing evidence supports that the interplay between the structural and functional properties of actin filaments is finely regulated by actin-binding proteins; however, the underlying mechanisms and biological consequences are not completely understood. Previous studies showed that the binding of formins to the barbed end induces conformational transitions in actin filaments by making them more flexible through long range allosteric interactions. These conformational changes are accompanied by altered functional properties of the filaments. To get insight into the conformational regulation of formin-nucleated actin structures, in the present work we investigated in detail how binding partners of formin-generated actin structures, myosin and tropomyosin, affect the conformation of the formin-nucleated actin filaments using fluorescence spectroscopic approaches. Time-dependent fluorescence anisotropy and temperature-dependent Förster-type resonance energy transfer measurements revealed that heavy meromyosin, similarly to tropomyosin, restores the formin-induced effects and stabilizes the conformation of actin filaments. The stabilizing effect of heavy meromyosin is cooperative. The kinetic analysis revealed that despite the qualitatively similar effects of heavy meromyosin and tropomyosin on the conformational dynamics of actin filaments the mechanisms of the conformational transition are different for the two proteins. Heavy meromyosin stabilizes the formin-nucleated actin filaments in an apparently single step reaction upon binding, whereas the stabilization by tropomyosin occurs after complex formation. These observations support the idea that actin-binding proteins are key elements of the molecular mechanisms that regulate the conformational and functional diversity of actin filaments in living cells.  相似文献   

17.
The microtubule-binding domain of MAP4, a ubiquitous microtubule-associated protein, contains a region rich in proline and basic residues (proline-rich region). We searched the bovine adrenal gland for MAP4 isoforms, and identified a novel variant lacking 72 consecutive amino acid residues within the proline-rich region, as compared with the full-length MAP4. The amino acid sequence of the missing region was highly conserved (about 85% identity/similarity) among the corresponding regions of bovine, human, mouse, and rat MAP4, which suggested the functional significance of this region. A comparison of the genomic sequence with the cDNA sequence revealed that the missing region is encoded by a single exon. A MAP4 variant cDNA homologous to the bovine form was also detected in rat cells, suggesting that the new variant can be generated by alternative splicing, not only in bovine but also in other mammalian species. The mRNA expression of the novel isoform was restricted to the brain and the adrenal medulla, suggesting that this isoform is specific to a certain cell type. Using a bacterially expressed fragment corresponding to the microtubule-binding domain of the novel isoform, we analyzed its in vitro characteristics. The fragment induced microtubule assembly and bound to preformed microtubules, but the activities were slightly lower than those of the conventional MAP4 fragment, which carries the full-length proline-rich region. The microtubules assembled in the presence of the fragment failed to be bundled. Instead, a constant spacing between neighboring microtubules was observed.  相似文献   

18.
The mutual effect of three actin-binding proteins (alpha-actinin, calponin and filamin) on the binding to actin was analyzed by means of differential centrifugation and electron microscopy. In the absence of actin alpha-actinin, calponin and filamin do not interact with each other. Calponin and filamin do not interfere with each other in the binding to actin bundles. Slight interference was observed in the binding of alpha-actinin and calponin to actin bundles. Higher ability of calponin to depress alpha-actinin binding can be due to the higher stoichiometry calponin/actin in the complexes formed. The largest interference was observed in the pair filamin-alpha-actinin. These proteins interfere with each other in the binding to the bundled actin filaments; however, neither of them completely displaced another protein from its complexes with actin. The structure of actin bundles formed in the presence of any one actin-binding protein was different from that observed in the presence of binary mixtures of two actin-binding proteins. In the case of calponin or its binary mixtures with alpha-actinin or filamin the total stoichiometry actin-binding protein/actin was larger than 0.5. This means that alpha-actinin, calponin and filamin may coexist on actin filaments and more than mol of any actin-binding protein is bound per two actin monomers. This may be important for formation of different elements of cytoskeleton.  相似文献   

19.
Members of the heat-stable family of microtubule-associated proteins (MAPs), MAP 2, tau, and MAP 4, contain three or four tandem imperfect repeated sequences close to their carboxyl termini. These sequences lie within the microtubule-binding domains of the MAPs; they have been proposed to be responsible for microtubule binding and the ability of these MAPs to lower the critical concentration for microtubule assembly. Their spacing may reflect that of the regularly arrayed tubulin subunits on the microtubule surface. We here characterize the 32- and 34-kDa chymotryptic microtubule-binding fragments of MAP 2 identified in earlier work. We identify the primary chymotryptic cleavage site in high molecular weight MAP 2 as between Phe1525 and Lys1526, within 13 amino acids of the known MAP 2 splice junction. We have raised a monoclonal antibody to the 32- and 34-kDa fragments and find that it reacts with all members of the heat-stable MAPs class. To determine where it reacts, we sequenced immunoreactive subfragments of the 32- and 34-kDa fragments, selected several cDNA clones with the antibody, and tested for antibody reactivity against a series of synthetic MAP 2 and tau peptides. We identify the epitope sequence as HHVPGGG (His-His-Val-Pro-Gly-Gly-Gly). The antibody also recognized several other MAP 2 and tau repeats. Despite reacting with this highly conserved element, we find that the antibody does not block microtubule binding, but binds to the MAPs and co-sediments with microtubules. These results suggest that there are other regions besides the repeated elements which are essential for microtubule binding.  相似文献   

20.
Severin from Dictyostelium discoideum is a Ca2(+)-activated actin-binding protein that severs actin filaments, nucleates actin assembly, and caps the fast growing ends of actin filaments. Sequence comparison with functionally related proteins, such as gelsolin, villin, or fragmin revealed highly conserved domains which are thought to be of functional significance. To attribute the different activities of the severin molecule to defined regions, progressively truncated severin polypeptides were constructed. The complete cDNA coding for 362 (DS362) amino acids and five 3' deletions coding for 277 (DS277), 177 (DS177), 151 (DS151), 117 (DS117), or 111 (DS111) amino acids were expressed in Escherichia coli. The proteins were purified to homogeneity and then characterized with respect to their effects on the polymerization or depolymerization kinetics of G- or F-actin solutions and their binding to G-actin. Furthermore, the Ca2+ binding of these proteins was investigated with a 45Ca-overlay assay and by monitoring Ca2(+)-dependent changes in tryptophan fluorescence. Bacterially expressed DS362 showed the same Ca2(+)-dependent activities as native severin. DS277, missing the 85 COOH-terminal amino acids of severin, had lost its strict Ca2+ regulation and displayed a Ca2(+)-independent capping activity, but was still Ca2+ dependent in its severing and nucleating activities. DS151 which corresponded to the first domain of gelsolin or villin had completely lost severing and nucleating properties. However, a residual severing activity of approximately 2% was detectable if 26 amino acids more were present at the COOH-terminal end (DS177). This locates similar to gelsolin the second actin-binding site to the border region between the first and second domain. Measuring the fluorescence enhancement of pyrene-labeled G-actin in the presence of DS111 showed that the first actin-binding site was present in the NH2-terminal 111 amino acids. Extension by six or more amino acids stabilized this actin-binding site in such a way that DS117 and even more pronounced DS151 became Ca2(+)-independent capping proteins. In comparison to many reports on gelsolin we draw the following conclusions. Among the three active actin-binding sites in gelsolin the closely neighboured sites one and two share the F-actin fragmenting function, whereas the actin-binding sites two and three, which are located in far distant domains, collaborate for nucleation. In contrast, severin contains two active actin-binding sites which are next to each other and are responsible for the severing as well as the nucleating function. The single actin-binding site near the NH2-terminus is sufficient for capping of actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号