首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emergence of multidrug resistant tuberculosis (MDRTB) highlights the urgent need to understand the mechanisms of resistance to the drugs and to develop a new arena of therapeutics to treat the disease. Ethambutol, isonazid, pyrazinamide, rifampicin are first line of drugs against TB, whereas aminoglycoside, polypeptides, fluoroquinolone, ethionamide are important second line of bactericidal drugs used to treat MDRTB, and resistance to one or both of these drugs are defining characteristic of extensively drug resistant TB. We retrieved 1,221 resistant genes from Antibiotic Resistance Gene Database (ARDB), which are responsible for resistance against first and second line antibiotics used in treatment of Mycobacterium tuberculosis infection. From network analysis of these resistance genes, 53 genes were found to be common. Phylogenetic analysis shows that more than 60% of these genes code for acetyltransferase. Acetyltransferases detoxify antibiotics by acetylation, this mechanism plays central role in antibiotic resistance. Seven acetyltransferase (AT-1 to AT-7) were selected from phylogenetic analysis. Structural alignment shows that these acetyltransferases share common ancestral core, which can be used as a template for structure based drug designing. From STRING analysis it is found that acetyltransferase interact with 10 different proteins and it shows that, all these interaction were specific to M. tuberculosis. These results have important implications in designing new therapeutic strategies with acetyltransferase as lead co-target to combat against MDR as well as Extreme drug resistant (XDR) tuberculosis.

Abbreviations

AA - amino acid, AT - Acetyltransferase, AAC - Aminoglycoside 2''-N-acetyltransferase, XDR - Extreme drug-resistant, MDR - Multidrug-resistant, Mtb - Mycobacterium tuberculosis, TB - Tuberculosis.  相似文献   

2.
Mycolic acids are long chain alpha-alkyl branched, beta-hydroxy fatty acids that represent a characteristic component of the Mycobacterium tuberculosis cell wall. Through their covalent attachment to peptidoglycan via an arabinogalactan polysaccharide, they provide the basis for an essential outer envelope membrane. Mycobacteria possess two fatty acid synthases (FAS); FAS-I carries out de novo synthesis of fatty acids while FAS-II is considered to elongate medium chain length fatty acyl primers to provide long chain (C(56)) precursors of mycolic acids. Here we report the crystal structure of Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase (ACP) II mtKasB, a mycobacterial elongation condensing enzyme involved in FAS-II. This enzyme, along with the M. tuberculosis beta-ketoacyl ACP synthase I mtKasA, catalyzes the Claisen-type condensation reaction responsible for fatty acyl elongation in FAS-II and are potential targets for development of novel anti-tubercular drugs. The crystal structure refined to 2.4 A resolution revealed that, like other KAS-II enzymes, mtKasB adopts a thiolase fold but contains unique structural features in the capping region that may be crucial to its preference for longer fatty acyl chains than its counterparts from other bacteria. Modeling of mtKasA using the mtKasB structure as a template predicts the overall structures to be almost identical, but a larger entrance to the active site tunnel is envisaged that might contribute to the greater sensitivity of mtKasA to the inhibitor thiolactomycin (TLM). Modeling of TLM binding in mtKasB shows that the drug fits the active site poorly and results of enzyme inhibition assays using TLM analogues are wholly consistent with our structural observations. Consequently, the structure described here further highlights the potential of TLM as an anti-tubercular lead compound and will aid further exploration of the TLM scaffold towards the design of novel compounds, which inhibit mycobacterial KAS enzymes more effectively.  相似文献   

3.
Isoniazid is a frontline drug used in the treatment of tuberculosis (TB). Isoniazid is a prodrug, requiring activation in the mycobacterial cell by the catalase/peroxidase activity of the katG gene product. TB kills two million people every year and the situation is getting worse due to the increase in prevalence of HIV/AIDS and emergence of multidrug-resistant strains of TB. Arylamine N-acetyltransferase (NAT) is a drug-metabolizing enzyme (E.C. 2.1.3.5). NAT can acetylate isoniazid, transferring an acetyl group from acetyl coenzyme A onto the terminal nitrogen of the drug, which in its N-acetylated form is therapeutically inactive. The bacterium responsible for TB, Mycobacterium tuberculosis, contains and expresses the gene encoding the NAT protein. Isoniazid binds to the NAT protein from Salmonella typhimurium and we report here the mode of binding of isoniazid in the NAT enzyme from Mycobacterium smegmatis, closely related to the M. tuberculosis and S. typhimurium NAT enzymes. The mode of binding of isoniazid to M. smegmatis NAT has been determined using data collected from two distinct crystal forms. We can say with confidence that the observed mode of binding of isoniazid is not an artifact of the crystallization conditions used. The NAT enzyme is active in mycobacterial cells and we propose that isoniazid binds to the NAT enzyme in these cells. NAT activity in M. tuberculosis is likely therefore to modulate the degree of activation of isoniazid by other enzymes within the mycobacterial cell. The structure of NAT with isoniazid bound will facilitate rational drug design for anti-tubercular therapy.  相似文献   

4.
5.
Tuberculosis remains a serious public health problem, worsened by an increased frequency of multidrug-resistant Mycobacterium tuberculosis. We report here a retrospective study of resistance to antituberculosis drugs of 170 strains of M. tuberculosis isolated from the state of Rio Grande do Sul, Brazil. The frequency of resistance to at least one drug was 34%, while 22% were resistant to more than one drug. Among the strains isolated from patients without a history of previous treatment for tuberculosis, patients with positive serology for HIV and patients with previous treatment for tuberculosis, the resistance to at least one drug was 14, 27 and 73%, respectively. Multidrug-resistant tuberculosis, defined as resistant to at least rifampicin (RMP) and isoniazid (INH), was found in the groups of patients without previous treatment, HIV co-infected and with previous treatment for tuberculosis at 10, 17 and 44%, respectively. With the purpose of evaluating whether the sensitivity test to INH and RMP would be a good marker to indicate resistance to other antituberculosis drugs, sensitivity tests were performed with four more drugs in 32 strains, initially classified as resistant to INH, RMP or both. Of 18 strains resistant to INH and RMP simultaneously, 89% showed resistance to four more drugs.  相似文献   

6.
An understanding of isoniazid (INH) drug resistance mechanism in Mycobacterium tuberculosis should provide significant insight for the development of newer anti-tubercular agents able to control INH-resistant tuberculosis (TB). The inhA-encoded 2-trans enoyl-acyl carrier protein reductase enzyme (InhA) has been shown through biochemical and genetic studies to be the primary target for INH. In agreement with these results, mutations in the inhA structural gene have been found in INH-resistant clinical isolates of M.tuberculosis, the causative agent of TB. In addition, the InhA mutants were shown to have higher dissociation constant values for NADH and lower values for the apparent first-order rate constant for INH inactivation as compared to wild-type InhA. Here, in trying to identify structural changes between wild-type and INH-resistant InhA enzymes, we have solved the crystal structures of wild-type and of S94A, I47T and I21V InhA proteins in complex with NADH to resolutions of, respectively, 2.3A, 2.2A, 2.0 A, and 1.9A. The more prominent structural differences are located in, and appear to indirectly affect, the dinucleotide binding loop structure. Moreover, studies on pre-steady-state kinetics of NADH binding have been carried out. The results showed that the limiting rate constant values for NADH dissociation from the InhA-NADH binary complexes (k(off)) were eleven, five, and tenfold higher for, respectively, I21V, I47T, and S94A INH-resistant mutants of InhA as compared to INH-sensitive wild-type InhA. Accordingly, these results are proposed to be able to account for the reduction in affinity for NADH for the INH-resistant InhA enzymes.  相似文献   

7.
The present study was undertaken to optimize the anti-tubercular activity of 2-acetamido-2-deoxy-β-d-glucopyranosyl N,N-dimethyldithiocarbamate (OCT313, Glc-NAc-DMDC), a lead compound previously reported by us. Structural modifications of OCT313 included the replacements of the DMDC group at C-1 by pyrrolidine dithiocarbamate (PDTC) and the acetyl group at C-2 by either propyl, butyl, benzyl or oleic acid groups. The antimycobacterial activities of these derivatives were evaluated against Mycobacterium tuberculosis (MTB). Glc-NAc-pyrrolidine dithiocarbamate (OCT313HK, Glc-NAc-PDTC) exhibited the most potent anti-tubercular activity with the minimal inhibitory concentration (MIC) of 6.25-12.5 μg/ml. The antibacterial activity of OCT313HK was highly specific to MTB and Mycobacterium bovis BCG, but not against Mycobacterium avium, Mycobacterium smegmatis, Staphylococcus aureus or Escherichia coli. Importantly, OCT313HK was also effective against MTB clinical isolates, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. Interestingly, OCT313HK was exerted the primary bactericidal activity, and it was also exhibited the bacteriolytic activity at high concentrations. We next investigated whether the mycobacterial monooxygenase EthA, a common activator of thiocarbamide-containing anti-tubercular drugs, also activated OCT313HK. Contrary to our expectations, the anti-tubercular activity of dithiocarbamate sugar derivatives and dithiocarbamates were not dependent on ethA expression, in contrast to thiocarbamide-containing drugs. Overall, this study presents OCT313HK as a novel and potent compound against MTB, particularly promising to overcome drug resistance.  相似文献   

8.
Arylamine N-acetyltransferases which acetylate and inactivate isoniazid, an anti-tubercular drug, are found in mycobacteria including Mycobacterium smegmatis and Mycobacterium tuberculosis. We have solved the structure of arylamine N-acetyltransferase from M. smegmatis at a resolution of 1.7 A as a model for the highly homologous NAT from M. tuberculosis. The fold closely resembles that of NAT from Salmonella typhimurium, with a common catalytic triad and domain structure that is similar to certain cysteine proteases. The detailed geometry of the catalytic triad is typical of enzymes which use primary alcohols or thiols as activated nucleophiles. Thermal mobility and structural variations identify parts of NAT which might undergo conformational changes during catalysis. Sequence conservation among eubacterial NATs is restricted to structural residues of the protein core, as well as the active site and a hinge that connects the first two domains of the NAT structure. The structure of M. smegmatis NAT provides a template for modelling the structure of the M. tuberculosis enzyme and for structure-based ligand design as an approach to designing anti-TB drugs.  相似文献   

9.
Tuberculosis (TB) remains a major global health concern whose control has been exacerbated by HIV and the emergence of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains of Mycobacterium tuberculosis. The demand for new and faster acting TB drugs is thus greater than ever. In the past decade intensive efforts have been made to discover new leads for TB drug development using both target-based and cell-based approaches. Here, we describe the most promising anti-tubercular drug candidates that are in clinical development and introduce some nitro-aromatic compounds that inhibit a new target, DprE1, an essential enzyme involved in a crucial step in mycobacterial cell wall biosynthesis.  相似文献   

10.
Drug-resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti-TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti-TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug-resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti-TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti-TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance.  相似文献   

11.
The review summarizes the data on the Mycobacterium tuberculosis mutations that lead to multidrug resistance (MDR) to various antibiotics. MDR strains arose over the past 30 years as a variety of antituberculosis drugs were introduced in medicine, and they largely discount the results of chemotherapy for tuberculosis. The most dangerous of them are strains with extensive drug resistance (XDR), which are resistant to four or five different drugs on average. The molecular mechanisms that make a strain resistant are considered. XDR and MDR strains result from successive and usually independent resistance mutations, which arise in various regions of the mycobacterial genome. In addition, the formation of resistant strains is affected by the phenomenon of tolerance and mycobacterial latency in infected tissues.  相似文献   

12.
Antibiotic resistance is a major public health problem globally. Particularly concerning amongst drug‐resistant human pathogens is Mycobacterium tuberculosis that causes the deadly infectious tuberculosis (TB) disease. Significant issues associated with current treatment options for drug‐resistant TB and the high rate of mortality from the disease makes the development of novel treatment options against this pathogen an urgent need. Antimicrobial peptides are part of innate immunity in all forms of life and could provide a potential solution against drug‐resistant TB. This review is a critical analysis of antimicrobial peptides that are reported to be active against the M tuberculosis complex exclusively. However, activity on non‐TB strains such as Mycobacterium avium and Mycobacterium intracellulare, whenever available, have been included at appropriate sections for these anti‐TB peptides. Natural and synthetic antimicrobial peptides of diverse sequences, along with their chemical structures, are presented, discussed, and correlated to their observed antimycobacterial activities. Critical analyses of the structure allied to the anti‐mycobacterial activity have allowed us to draw important conclusions and ideas for research and development on these promising molecules to realise their full potential. Even though the review is focussed on peptides, we have briefly summarised the structures and potency of the various small molecule drugs that are available and under development, for TB treatment.  相似文献   

13.
ABSTRACT: BACKGROUND: Monitoring drug resistance in Mycobacterium tuberculosis is essential to curb the spread of tuberculosis (TB). Unfortunately, drug susceptibility testing is currently not available in Papua New Guinea (PNG) and that impairs TB control in this country. We report for the first time M. tuberculosis mutations associated with resistance to first and second-line anti-TB drugs in Madang, PNG. A molecular cluster analysis was performed to identify M. tuberculosis transmission in that region. RESULTS: Phenotypic drug susceptibility tests showed 15.7% resistance to at least one drug and 5.2% multidrug resistant (MDR) TB. Rifampicin resistant strains had the rpoB mutations D516F, D516Y or S531L; isoniazid resistant strains had the mutations katG S315T or inhA promoter C15T; streptomycin resistant strains had the mutations rpsL K43R, K88Q, K88R), rrs A514C or gidB V77G. The molecular cluster analysis indicated evidence for transmission of resistant strain. CONCLUSIONS: We observed a substantial rate of MDR-TB in the Madang area of PNG associated with mutations in specific genes. A close monitoring of drug resistance is therefore urgently required, particularly in the presence of drug-resistant M. tuberculosis transmission. In the absence of phenotypic drug susceptibility testing in PNG, molecular assays for drug resistance monitoring would be of advantage.  相似文献   

14.
The resumption of tuberculosis led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. Isoniazid (INH), the most prescribed drug to treat TB, inhibits an NADH-dependent enoyl-acyl carrier protein reductase (InhA) that provides precursors of mycolic acids, which are components of the mycobacterial cell wall. InhA is the major target of the mode of action of isoniazid. INH is a pro-drug that needs activation to form the inhibitory INH-NAD adduct. Missense mutations in the inhA structural gene have been identified in clinical isolates of Mycobacterium tuberculosis resistant to INH. To understand the mechanism of resistance to INH, we have solved the structure of two InhA mutants (I21V and S94A), identified in INH-resistant clinical isolates, and compare them to INH-sensitive WT InhA structure in complex with the INH-NAD adduct. We also solved the structure of unliganded INH-resistant S94A protein, which is the first report on apo form of InhA. The salient features of these structures are discussed and should provide structural information to improve our understanding of the mechanism of action of, and resistance to, INH in M. tuberculosis. The unliganded structure of InhA allows identification of conformational changes upon ligand binding and should help structure-based drug design of more potent antimycobacterial agents.  相似文献   

15.
Currently used anti-tubercular drugs target actively growing Mycobacterium tuberculosis (Mtb) but there are no current therapies targeting persistent mycobacteria. Isocitrate lyase (ICL) is an important enzyme of the glyoxylate shunt pathway used by Mtb for sustaining intracellular infection in inflammatory macrophages under conditions of stress such as nutrient depletion and anaerobic metabolism. Since the humans do not possess this enzyme it constitutes an attractive target for selective drug design. Present work describes synthesis and structural characterization of pyruvate-isoniazid conjugates and their copper complexes with potent anti-tubercular activities against M. tuberculosis H37Rv.  相似文献   

16.
AhpC, oxidative stress and drug resistance in Mycobacterium tuberculosis   总被引:3,自引:0,他引:3  
The Mycobacterium tuberculosis AhpC is similar to a family of bacterial and eukaryotic antioxidant proteins with alkylhydroperoxidase (Ahp) and thioredoxin-dependent peroxidase (TPx) activities. AhpC expression is associated with resistance to the front-line antitubercular drug isoniazid in the naturally resistant organisms E. coli and M. smegmatis. We identified several isoniazid-resistant M. tuberculosis isolates with ahpC promoter mutations resulting in AhpC overexpression. These strains were more resistant to cumene hydroperoxide than were wild-type strains. However, these strains were unchanged in their sensitivity to isoniazid, refuting a role for AhpC in detoxification of this drug. All the isoniazid-resistant, AhpC-overexpressing strains were also deficient in activity of the mycobacterial catalase-peroxidase KatG. KatG, the only known catalase in M. tuberculosis, is required for activation of isoniazid. We propose that compensatory ahpC promoter mutations are selected from KatG-deficient, isoniazid-resistant M. tuberculosis during infections, to mitigate the added burden imposed by organic peroxides on these strains.  相似文献   

17.
18.
Among all infectious diseases that afflict humans, tuberculosis (TB) remains the deadliest. At present, epidemiologists estimate that one-third of the world population is infected with tubercle bacilli, which is responsible for 8 to 10 million new cases of TB and 3 million deaths annually throughout the world. Approximately 95% of new cases and 98% of deaths occur in developing nations, generally due to the few resources available to ensure proper treatment and where human immunodeficiency virus (HIV) infections are common. In 1882, Dr Robert Koch identified an acid-fast bacterium, Mycobacterium tuberculosis, as the causative agent of TB. Thirty-nine years later, BCG vaccine was introduced for human use, and became the most widely used prophylactic strategy to fight TB in the world. The discovery of the properties of first-line antimycobacterial drugs in the past century yielded effective chemotherapies, which considerably decreased TB mortality rates worldwide. The later introduction of some additional drugs to the arsenal used to treat TB seemed to provide an adequate number of effective antimicrobial agents. The modern, standard short-course therapy for TB recommended by the World Health Organization is based on a four-drug regimen that must be strictly followed to prevent drug resistance acquisition, and relies on direct observation of patient compliance to ensure effective treatment. Mycobacteria show a high degree of intrinsic resistance to most antibiotics and chemotherapeutic agents due to the low permeability of its cell wall. Nevertheless, the cell wall barrier alone cannot produce significant levels of drug resistance. M. tuberculosis mutants resistant to any single drug are naturally present in any large bacterial population, irrespective of exposure to drugs. The frequency of mutants resistant to rifampicin and isoniazid, the two principal antimycobacterial drugs currently in use, is relatively high and, therefore, the large extra-cellular population of actively metabolizing and rapidly growing tubercle bacilli in cavitary lesions will contain organisms which are resistant to a single drug. Consequently, monotherapy or improperly administered two-drug therapies will select for drug-resistant mutants that may lead to drug resistance in the entire bacterial population. Thereby, despite the availability of effective chemotherapy and the moderately protective vaccine, new anti-TB agents are urgently needed to decrease the global incidence of TB. The resumption of TB, mainly caused by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains and HIV epidemics, led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. The latter should be effective to combat both drug-susceptible and MDR/XDR-TB.  相似文献   

19.
The review summarizes the data on the Mycobacterium tuberculosis mutations that lead to multidrug resistance (MDR) to various antibiotics. MDR strains arose over the past 30 years as a variety of antituberculosis drugs were introduced in medicine, and they largely discount the results of chemotherapy for tuberculosis. The most dangerous of them are strains with extensive drug resistance (XDR), which are resistant to four or five different drugs on average. The molecular mechanisms that make a strain resistant are considered. XDR and MDR strains result from successive and usually independent resistance mutations, which arise in various regions of the mycobacterial genome. In addition, the formation of resistant strains is affected by the phenomenon of tolerance and mycobacterial latency in infected tissues.  相似文献   

20.
Pyrazinamide (PZA) is an important antituberculosis drug. Unlike most antibacterial agents, PZA, despite its remarkable in vivo activity, has no activity against Mycobacterium tuberculosis in vitro except at an acidic pH. M. tuberculosis is uniquely susceptible to PZA, but other mycobacteria as well as nonmycobacteria are intrinsically resistant. The role of acidic pH in PZA action and the basis for the unique PZA susceptibility of M. tuberculosis are unknown. We found that in M. tuberculosis, acidic pH enhanced the intracellular accumulation of pyrazinoic acid (POA), the active derivative of PZA, after conversion of PZA by pyrazinamidase. In contrast, at neutral or alkaline pH, POA was mainly found outside M. tuberculosis cells. PZA-resistant M. tuberculosis complex organisms did not convert PZA into POA. Unlike M. tuberculosis, intrinsically PZA-resistant M. smegmatis converted PZA into POA, but it did not accumulate POA even at an acidic pH, due to a very active POA efflux mechanism. We propose that a deficient POA efflux mechanism underlies the unique susceptibility of M. tuberculosis to PZA and that the natural PZA resistance of M. smegmatis is due to a highly active efflux pump. These findings may have implications with regard to the design of new antimycobacterial drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号