首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Identifying the endogenous RNA induced silencing complex(RISC)-associated RNAs is essential for understanding the cellular regulatory networks by miRNAs. Recently, isolation of RISC-associated mRNAs using antibody was reported, but their method needs a large amount of initial materials. We tried to improve the protocol and constructed an efficient and convenient system for analyzing miRNA and mRNA contents in RISC.

Findings

With our protocol, it is possible to clone both miRNAs and mRNAs from the endogenous RISC-associated RNAs immunoprecipitated from less than 107 cells, and we show the ability of our system to isolate the particular target mRNAs for a specific miRNA from the RISC-associated mRNAs using well-characterized miR-122 as an example. After introduction of miR-122 into HepG2 cells, we found several cDNA clones that have miR-122 target sequences. Four of these clones that were concentrated in RISC but decreased in total RNA fraction are expected to be miR-122 target candidates. Interestingly, we found substantial amounts of Alu-related sequences, including both free Alu RNA and Alu-embedded mRNA, which might be one of the general targets for miRNA, in the cDNA clones from the RISC-associated mRNAs.

Conclusion

Our method thus enables us to examine not only dynamic changes in miRNA and mRNA contents in RISC but also the relationship of miRNA and target mRNA. We believe that our method can contribute to understanding cellular regulatory networks by miRNAs.  相似文献   

3.
4.
Liu Q  Fu H  Sun F  Zhang H  Tie Y  Zhu J  Xing R  Sun Z  Zheng X 《Nucleic acids research》2008,36(16):5391-5404
  相似文献   

5.
MicroRNAs (miRNAs) are endogenous, single-stranded, noncoding RNAs of 21 to 23 nucleotides that regulate gene expression, typically by binding the 3' untranslated regions of target messenger RNAs. It is estimated that miRNAs are involved in the regulation of 30% of all genes and almost every genetic pathway. Recently, the misregulation of miRNAs has been linked to various human diseases including cancer and viral infections, identifying miRNAs as potential targets for drug discovery. Thus, small-molecule modifiers of miRNAs could serve as lead structures for the development of new therapeutic agents and be useful tools in the elucidation of detailed mechanisms of miRNA function. As a result, we have developed a high-throughput screen for potential small-molecule regulators of the liver-specific microRNA miR-122, which is involved in hepatocellular carcinoma development and hepatitis C virus infection. Our small-molecule screen employs a Huh7 human hepatoma cell line stably transfected with a Renilla luciferase sensor for endogenous miR-122. The assay was optimized and validated using an miR-122 antisense agent and a previously identified small-molecule miR-122 inhibitor. The described reporter assay will enable the high-throughput screening of small-molecule miR-122 inhibitors and can be readily extended to other miRNAs.  相似文献   

6.
7.
8.
MicroRNAs (miRNAs) play key roles in gene expression regulation by guiding Argonaute (AGO)-containing microribonucleoprotein (miRNP) effector complexes to target polynucleotides. There are still uncertainties about how miRNAs interact with mRNAs. Here we employed a biochemical approach to isolate AGO-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with a previously described anti-AGO antibody. Co-immunoprecipitated (co-IPed) RNAs were subjected to downstream Affymetrix Human Gene 1.0 ST microarray analysis. During rigorous validation, the “RIP-Chip” assay identified target mRNAs specifically associated with AGO complexes. RIP-Chip was performed after transfecting brain-enriched miRNAs (miR-107, miR-124, miR-128, and miR-320) and nonphysiologic control miRNA to identify miRNA targets. As expected, the miRNA transfections altered the mRNA content of the miRNPs. Specific mRNA species recruited to miRNPs after miRNA transfections were moderately in agreement with computational target predictions. In addition to recruiting mRNA targets into miRNPs, miR-107 and to a lesser extent miR-128, but not miR-124 or miR-320, caused apparent exclusion of some mRNAs that are normally associated with miRNPs. MiR-107 and miR-128 transfections also result in decreased AGO mRNA and protein levels. However, AGO mRNAs were not recruited to miRNPs after either miR-107 or miR-128 transfection, confirming that miRNAs may alter gene expression without stable association between particular mRNAs and miRNPs. In summary, RIP-Chip assays constitute an optimized, validated, direct, and high-throughput biochemical assay that provides data about specific miRNA:mRNA interactions, as well as global patterns of regulation by miRNAs.  相似文献   

9.
10.
Sequence requirements for micro RNA processing and function in human cells   总被引:26,自引:3,他引:23  
  相似文献   

11.
12.
MicroRNAs (miRNAs) are small non-coding RNAs involved in fine-tuning of gene regulation. Antisense oligonucleotides (ONs) are promising tools as anti-miRNA (anti-miR) agents toward therapeutic applications and to uncover miRNA function. Such anti-miR ONs include 2'-O-methyl (OMe), cationic peptide nucleic acids like K-PNA-K3, and locked nucleic acid (LNA)-based anti-miRs such as LNA/DNA or LNA/OMe. Northern blotting is a widely used and robust technique to detect miRNAs. However, miRNA quantification in the presence of anti-miR ONs has proved to be challenging, due to detection artifacts, which has led to poor understanding of miRNA fate upon anti-miR binding. Here we show that anti-miR ON bound to miR-122 can prevent the miRNA from being properly precipitated into the purified RNA fraction using the standard RNA extraction protocol (TRI-Reagent), yielding an RNA extract that does not reflect the real cellular levels of the miRNA. An increase in the numbers of equivalents of isopropanol during the precipitation step leads to full recovery of the targeted miRNA back into the purified RNA extract. Following our improved protocol, we demonstrate by Northern blotting, in conjunction with a PNA decoy strategy and use of high denaturing PAGE, that high-affinity anti-miRs (K-PNA-K3, LNA/DNA, and LNA/OMe) sequester miR-122 without causing miRNA degradation, while miR-122 targeting with a lower-affinity anti-miR (OMe) seems to promote degradation of the miRNA. The technical issues explored in this work will have relevance for other hybridization-based techniques for miRNA quantification in the presence of anti-miR ONs.  相似文献   

13.

Background and Aims

Cholangiocarcinoma (CCA) is highly resistant to chemotherapy, including gemcitabine (Gem) treatment. MicroRNAs (miRNAs) are endogenous, non-coding, short RNAs that can regulate multiple genes expression. Some miRNAs play important roles in the chemosensitivity of tumors. Here, we examined the relationship between miRNA expression and the sensitivity of CCA cells to Gem.

Methods

Microarray analysis was used to determine the miRNA expression profiles of two CCA cell lines, HuH28 and HuCCT1. To determine the effect of candidate miRNAs on Gem sensitivity, expression of each candidate miRNA was modified via either transfection of a miRNA mimic or transfection of an anti-oligonucleotide. Ontology-based programs were used to identify potential target genes of candidate miRNAs that were confirmed to affect the Gem sensitivity of CCA cells.

Results

HuCCT1 cells were more sensitive to Gem than were HuH28 cells, and 18 miRNAs were differentially expressed whose ratios over ± 2log2 between HuH28 and HuCCT1. Among these 18 miRNAs, ectopic overexpression of each of three downregulated miRNAs in HuH28 (miR-29b, miR-205, miR-221) restored Gem sensitivity to HuH28. Suppression of one upregulated miRNA in HuH28, miR-125a-5p, inhibited HuH28 cell proliferation independently to Gem treatment. Selective siRNA-mediated downregulation of either of two software-predicted targets, PIK3R1 (target of miR-29b and miR-221) or MMP-2 (target of miR-29b), also conferred Gem sensitivity to HuH28.

Conclusions

miRNA expression profiling was used to identify key miRNAs that regulate Gem sensitivity in CCA cells, and software that predicts miRNA targets was used to identify promising target genes for anti-tumor therapies.  相似文献   

14.
MicroRNAs (miRNAs) are a class of non-coding small RNAs that act as negative regulators of gene expression through sequence-specific interactions with the 3′ untranslated regions (UTRs) of target mRNA and play various biological roles. miR-133 was identified as a muscle-specific miRNA that enhanced the proliferation of myoblasts during myogenic differentiation, although its activity in myogenesis has not been fully characterized. Here, we developed a novel retroviral vector system for monitoring muscle-specific miRNA in living cells by using a green fluorescent protein (GFP) that is connected to the target sequence of miR-133 via the UTR and a red fluorescent protein for normalization. We demonstrated that the functional promotion of miR-133 during myogenesis is visualized by the reduction of GFP carrying the miR-133 target sequence, suggesting that miR-133 specifically down-regulates its targets during myogenesis in accordance with its expression. Our cell-based miRNA functional assay monitoring miR-133 activity should be a useful tool in elucidating the role of miRNAs in various biological events.  相似文献   

15.
MicroRNAs (miRNAs) are single-stranded non-coding RNAs composed of 20-23 nucleotides. They are initially transcribed in the nucleus as pri-miRNAs. After processing, one strand from the miRNA duplex (miR-5p/miR-3p duplex) is loaded onto the RNA-induced silencing complex (RISC) to produce a functional, mature miRNA that inhibits the expression of multiple target genes. In the case of some miRNAs, both strands can be equally incorporated into the RISC as single strands, and both strands can function as mature miRNAs. Thus, a technique for selective expression of miR-5p and miR-3p strands is required to identify distinct targets of miRNAs. In this Letter, we report the synthesis and properties of miRNA duplexes carrying biaryl units at the 5'-terminus of one strand. We found that incorporation of biaryl units at the 5'-terminus of one strand of miRNA duplexes induced strand specificity in these duplexes. Further, we succeeded in identifying endogenous mRNA targets for each strand of the duplex by using the biaryl-modified miRNA duplexes.  相似文献   

16.
17.
杨红波  梁巍  刘新星  朱作言  林硕  张博 《遗传》2012,34(9):1181-1192
microRNA(miRNA)是一类细胞内源表达的小分子非编码RNA, 主要通过降解靶基因的mRNA或者抑制靶基因的翻译, 在动植物的发育以及其他重要的生理过程中起调控作用。miRNA的功能跟它的表达位置与时间密切相关, 但是目前尚缺乏一个能够在活体与个体水平稳定、持续地实时观察miRNA动态表达的方法。文章以斑马鱼为模式, 建立了一个双荧光报告系统(我们称之为miRNA Tracer), 用于在斑马鱼整体胚胎中追踪特定miRNA的表达谱及动态变化过程。该系统以Tol2转座子为基础, 采用来自斑马鱼hsp70基因的热激启动子分别驱动eGFP和mRFP1荧光报告基因, 同时在其中一个报告基因的3′-UTR区连接待测miRNA的互补序列, 构成Tracer质粒。该互补序列与斑马鱼胚胎中相应的内源miRNA结合后能够使对应报告基因的荧光信号强度减弱, 通过比较两个报告基因在表达谱上的差异辨别miRNA的表达区域, 检测斑马鱼胚胎中miRNA起作用的位置和时间。文章选择在肌肉系统特异表达的miR-206以及在神经系统特异表达的miR-219, 分别在显微注射瞬时表达和转基因稳定整合等两个层次上验证了上述Tracer系统。结果表明, 所用的方法能够如实地在单细胞水平和整体水平检测到目标miRNA的时空表达动态变化。miRNA Tracer系统为在斑马鱼发育过程中对miRNA进行活体、实时的时空定位提供了一个独特而有效的方法, 也为对miRNA进行功能与作用机制等更深入的研究奠定了基础。

补充资料

s219mRFP1-dF转基因胚胎的3-D图像 [视频]  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号