首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AC133-2, a novel isoform of human AC133 stem cell antigen   总被引:27,自引:0,他引:27  
Human AC133 antigen, also called CD133, was recently identified as a hematopoietic stem cell marker. However, the molecular structure and function of this protein has remained unclear. Here we cloned and identified a novel isoform of AC133, which we named AC133-2. In comparison to the reported AC133 cDNA, which is referred to herein as AC133-1, a small exon of 27 nucleotides is deleted in AC133-2 by alternative mRNA splicing. Similar to the previously characterized AC133 antigen, recombinant AC133-2 expressed in 293 cells was glycosylated and transported to plasma membrane. AC133-2 mRNA was found predominant in a variety of human fetal tissue, adult tissues, and several carcinomas. In contrast, AC133-1 mRNA was more prominent in fetal brain and adult skeletal muscle but was not detected in fetal liver and kidney, adult pancreas, kidney, and placenta, suggesting different roles for the two isoforms in fetal development and mature organ homeostasis. Here, we demonstrate that AC133-2 is the isoform expressed on hematopoietic stem cells derived from fetal liver, bone marrow, and peripheral blood. The results indicate that AC133-2, not AC133-1, has been the cell surface antigen recognized by anti-AC133 monoclonal antibodies that are used for isolation of hematopoietic stem cells. To further investigate its expression in other stem cell populations, we found that AC133-2 co-expressed with beta(1) integrin in the basal layer of human neonatal epidermis. AC133-2(+)/beta(1) integrin(+) cells proliferated and differentiated in culture, which coincided with a loss of AC133-2 and gain in a terminal differentiation marker involucrin. Taken together, these results suggest that AC133-2 is expressed in multiple stem cell niches and may provide a means to isolate specific stem cell subpopulations from human tissues.  相似文献   

2.

Background

Cancer stem cells are thought to play a pivotal role in tumor maintenance, metastasis, tumor therapy resistance and relapse. Hence, the development of methods for non-invasive in vivo detection of cancer stem cells is of great importance.

Methodology/Principal Findings

Here, we describe successful in vivo detection of CD133/prominin, a cancer stem cell surface marker for a variety of tumor entities. The CD133-specific monoclonal antibody AC133.1 was used for quantitative fluorescence-based optical imaging of mouse xenograft models based on isogenic pairs of CD133 positive and negative cell lines. A first set consisted of wild-type U251 glioblastoma cells, which do not express CD133, and lentivirally transduced CD133-overexpressing U251 cells. A second set made use of HCT116 colon carcinoma cells, which uniformly express CD133 at levels comparable to primary glioblastoma stem cells, and a CD133-negative HCT116 derivative. Not surprisingly, visualization and quantification of CD133 in overexpressing U251 xenografts was successful; more importantly, however, significant differences were also found in matched HCT116 xenograft pairs, despite the lower CD133 expression levels. The binding of i.v.-injected AC133.1 antibodies to CD133 positive, but not negative, tumor cells isolated from xenografts was confirmed by flow cytometry.

Conclusions/Significance

Taken together, our results show that non-invasive antibody-based in vivo imaging of tumor-associated CD133 is feasible and that CD133 antibody-based tumor targeting is efficient. This should facilitate developing clinically applicable cancer stem cell imaging methods and CD133 antibody-based therapeutics.  相似文献   

3.
4.
Cancer stem cells (CSCs) have been identified in a number of solid tumors, but not yet in rhabdomyosarcoma (RMS), the most frequently occurring soft tissue tumor in childhood. Hence, the aim of this study was to identify and characterize a CSC population in RMS using a functional approach. We found that embryonal rhabdomyosarcoma (eRMS) cell lines can form rhabdomyosarcoma spheres (short rhabdospheres) in stem cell medium containing defined growth factors over several passages. Using an orthotopic xenograft model, we demonstrate that a 100 fold less sphere cells result in faster tumor growth compared to the adherent population suggesting that CSCs were enriched in the sphere population. Furthermore, stem cell genes such as oct4, nanog, c-myc, pax3 and sox2 are significantly upregulated in rhabdospheres which can be differentiated into multiple lineages such as adipocytes, myocytes and neuronal cells. Surprisingly, gene expression profiles indicate that rhabdospheres show more similarities with neuronal than with hematopoietic or mesenchymal stem cells. Analysis of these profiles identified the known CSC marker CD133 as one of the genes upregulated in rhabdospheres, both on RNA and protein levels. CD133(+) sorted cells were subsequently shown to be more tumorigenic and more resistant to commonly used chemotherapeutics. Using a tissue microarray (TMA) of eRMS patients, we found that high expression of CD133 correlates with poor overall survival. Hence, CD133 could be a prognostic marker for eRMS. These experiments indicate that a CD133(+) CSC population can be enriched from eRMS which might help to develop novel targeted therapies against this pediatric tumor.  相似文献   

5.
To explore the physiological significance of AC133 expression on human haematopoietic cells, we phenotyped normal and malignant human haematopoietic cells for AC133 expression, evaluated the utility of AC133 for isolating human stem/progenitor cells in comparison to other known early haematopoietic cell markers, investigated the role of AC133 in regulating hematopoiesis, and evaluated the possibility that MYB might regulate AC133. We found that while human CD34+ progenitor cells expressed AC133, expression was rapidly downregulated during differentiation. In apparent contrast, AC133 mRNA was detectable in cells isolated from CFU-Mix, BFU-E, CFU-GM and CFU-Meg colonies. Human cord blood CD34+ cells expressed AC133 at higher levels than their normal bone marrow counterparts. In apparent contrast to normal primitive haematopoietic cells, the AC133 protein was undetectable on cells from 24 different human haematopoietic cells lines, even though the majority of these cells expressed AC133 mRNA. Since CD34, AC133 and the c-kit (KIT) receptor are all co-expressed on human stem/progenitor cells, we compared the ability of monoclonal antibodies directed against each of these proteins to isolate early progenitor cells. Using these antibodies and magnetized particles in a standard immunoaffinity isolation protocol, we found that anti-CD34 and anti-KIT MoAbs could isolate > 80-90% of the clonogeneic cell population present in a given marrow sample. Anti-AC133 MoAbs recovered approximately 75-80% of CFU-GM and CFU-Meg, but only about 30% of CFU-Mix and BFU-E. Perturbation of AC133 expression with antisense oligodeoxynucleotides (AS ODN) resulted in transient downregulation of AC133 protein on human CD34+ cells but no apparent effect on cell survival or cloning efficiency ex vivo. Finally, downregulation of MYB expression with AS ODN had no effect on the AC133 expression at either the mRNA or protein level. Based on these results, we conclude that AC133 offers no distinct advantage over CD34 or c-kit as a target for immunoaffinity based isolation of primitive hematopoietic cells, that AC133 expression is not required for normal hematopoietic progenitor cell development in vitro, and finally that AC133 expression may not be MYB-dependent.  相似文献   

6.
AC133/CD133/Prominin-1   总被引:13,自引:0,他引:13  
  相似文献   

7.
The human AC133 antigen and mouse prominin are structurally related plasma membrane proteins. However, their tissue distribution is distinct, with the AC133 antigen being found on hematopoietic stem and progenitor cells and prominin on various epithelial cells. To determine whether the human AC133 antigen and mouse prominin are orthologues or distinct members of a protein family, we examined the human epithelial cell line Caco-2 for the possible expression of the AC133 antigen. By both immunofluorescence and immunoprecipitation, the AC133 antigen was found to be expressed on the surface of Caco-2 cells. Interestingly, immunoreactivity for the AC133 antigen, but not its mRNA level, was down-regulated upon differentiation of Caco-2 cells. The AC133 antigen was specifically located at the apical rather than basolateral plasma membrane. An apical localization of the AC133 antigen was also observed in various human embryonic epithelia including the neural tube, gut, and kidney. Electron microscopy revealed that, within the apical plasma membrane of Caco-2 cells, the AC133 antigen was confined to microvilli and absent from the planar, intermicrovillar regions. This specific subcellular localization did not depend on an epithelial phenotype, because the AC133 antigen on hematopoietic stem cells, as well as that ectopically expressed in fibroblasts, was selectively found in plasma membrane protrusions. Hence, the human AC133 antigen shows the features characteristic of mouse prominin in epithelial and transfected non-epithelial cells, i.e. a selective association with apical microvilli and plasma membrane protrusions, respectively. Conversely, flow cytometry of murine CD34(+) bone marrow progenitors revealed the cell surface expression of prominin. Taken together, the data strongly suggest that the AC133 antigen is the human orthologue of prominin.  相似文献   

8.
Emerging evidence suggests that tumors contain and are driven by a cellular component that displays stem cell properties, the so-called cancer stem cells (CSCs). CSCs have been identified in several solid human cancers; however, there are no data about CSCs in primary human gastric cancer (GC). By using CD133 and CD44 cell surface markers we investigated whether primary human GCs contain a cell subset expressing stem-like properties and whether this subpopulation has tumor-initiating properties in xenograft transplantation experiments. We examined tissues from 44 patients who underwent gastrectomy for primary GC. The tumorigenicity of the cells separated by flow cytometry using CD133 and CD44 surface markers was tested by subcutaneous or intraperitoneum injection in NOD/SCID and nude mice. GCs included in the study were intestinal in 34 cases and diffuse in 10 cases. All samples contained surface marker-positive cells: CD133(+) mean percentage 10.6% and CD133(+)/CD44(+) mean percentage 27.7%, irrespective of cancer phenotype or grade of differentiation. Purified CD133(+) and CD133(+)/CD44(+) cells, obtained in sufficient number only in 12 intestinal type GC cases, failed to reproduce cancer in two mice models. However, the unseparated cells produced glandular-like structures in 70% of the mice inoculated. In conclusion, although CD133(+) and CD133(+)/CD44(+) were detectable in human primary GCs, they neither expressed stem-like properties nor exhibited tumor-initiating properties in xenograft transplantation experiments.  相似文献   

9.
The CD133 glycoprotein is a controversial cancer stem cell marker in the field of neuro‐oncology, based largely on the now considerable experimental evidence for the existence of both CD133+ve and CD133?ve populations as tumour‐initiating cells. It is thought that decreasing oxygen tension enhances the complex regulation and phenotype of CD133 in glioma. In light of these ideologies, establishing the precise functional role of CD133 is becoming increasingly critical. In this article, we review the complex regulation of CD133 and its extracellular epitope AC133, and associated alterations, to tumour cell behaviour by hypoxia. Furthermore, its role in functional modulation of tumours, rather than determination of a specific stem cell type is therefore alluded to, while evidence for and against its ability as a cancer stem cell marker in primary brain tumours, is critically evaluated. Thus, the suggestion that CD133 may be a central ‘holy grail’ in identifying core cells for propagation of malignant glial neoplasms seems increasingly less convincing. It remains to be seen, however, whether CD133 is randomly expressed on such brain tumour cell populations or whether it is of major significance to brain biological behaviour.  相似文献   

10.
A transmembrane protein CD133 has been implicated as a marker of stem-like glioma cells and predictor for therapeutic response in malignant brain tumours. CD133 expression is commonly evaluated by using antibodies specific for the AC133 epitope located in one of the extracellular domains of membrane-bound CD133. There is conflicting evidence regarding the significance of the AC133 epitope as a marker for identifying stem-like glioma cells and predicting the degree of malignancy in glioma cells. The reasons for discrepant results between different studies addressing the role of CD133/AC133 in gliomas are unclear. A possible source for controversies about CD133/AC133 is the widespread assumption that expression patterns of the AC133 epitope reflect linearly those of the CD133 protein. Consequently, the readouts from AC133 assessments are often interpreted in terms of the CD133 protein. The purpose of this study is to determine whether and to what extent do the readouts obtained with anti-AC133 antibody correspond to the level of CD133 protein expressed in stem-like glioma cells. Our study reveals for the first time that CD133 expressed on the surface of glioma cells is poorly immunoreactive for AC133. Furthermore, we provide evidence that the level of CD133 occupancy on the surface of glioma cells fluctuates during the cell cycle. Our results offer a new explanation for numerous inconsistencies regarding the biological and clinical significance of CD133/AC133 in human gliomas and call for caution in interpreting the lack or presence of AC133 epitope in glioma cells.  相似文献   

11.
The putative tumor stem cell marker CD133 is the marker of choice for identifying brain tumor stem cells in gliomas, but the use of different CD133 antibody clones possibly recognizing different CD133 splice variants with epitopes of different glycosylation status confuses the field. The aim was to investigate if current inconsistent CD133 observations could be a result of using different CD133 antibodies for immunohistochemical identification of CD133. Ten glioblastomas were immunohistochemically stained with four different CD133 antibody clones (AC133, W6B3C1, C24B9, and ab19898) and analyzed by quantitative stereology. Moreover, the CD133 staining pattern of each antibody clone was investigated in kidney, pancreas, and placenta tissue as well as in glioblastoma and retinoblastoma cultures and cell lines. All antibody clones revealed CD133+ niches and single cells in glioblastomas, but when using different clones, their distribution rarely corresponded. Morphology of identified single cells varied, and staining of various tissues, cultures, and cells lines was also inconsistent among the clones. In conclusion, the authors report inconsistent CD133 detection when using different primary CD133 antibody clones. Thus, direct comparison of studies using different antibody clones and conclusions based on CD133 immunohistochemistry should be performed with caution.  相似文献   

12.
High-throughput screening (HTS) of large-scale RNA interference (RNAi) libraries has become an increasingly popular method of functional genomics in recent years. Cell-based assays used for RNAi screening often produce small dynamic ranges and significant variability because of the combination of cellular heterogeneity, transfection efficiency, and the intrinsic nature of the genes being targeted. These properties make reliable hit selection in the RNAi screen a difficult task. The use of robust methods based on median and median absolute deviation (MAD) has been suggested to improve hit selection in such cases, but mean and standard deviation (SD)-based methods are still predominantly used in many RNAi HTS. In an experimental approach to compare these 2 methods, a genome-scale small interfering RNA (siRNA) screen was performed, in which the identification of novel targets increasing the therapeutic index of the chemotherapeutic agent mitomycin C (MMC) was sought. MAD values were resistant to the presence of outliers, and the hits selected by the MAD-based method included all the hits that would be selected by SD-based method as well as a significant number of additional hits. When retested in triplicate, a similar percentage of these siRNAs were shown to genuinely sensitize cells to MMC compared with the hits shared between SD- and MAD-based methods. Confirmed hits were enriched with the genes involved in the DNA damage response and cell cycle regulation, validating the overall hit selection strategy. Finally, computer simulations showed the superiority and generality of the MAD-based method in various RNAi HTS data models. In conclusion, the authors demonstrate that the MAD-based hit selection method rescued physiologically relevant false negatives that would have been missed in the SD-based method, and they believe it to be the desirable 1st-choice hit selection method for RNAi screen results.  相似文献   

13.
Interferon-gamma (IFN-γ) inhibits intracellular replication of Francisella tularensis in human monocyte-derived macrophages (HMDM) and in mice, but the mechanisms of this protective effect are poorly characterized. We used genome-wide RNA interference (RNAi) screening in the human macrophage cell line THP-1 to identify genes that mediate the beneficial effects of IFN-γ on F. tularensis infection. A primary screen identified ~200 replicated candidate genes. These were prioritized according to mRNA expression in IFN-γ-primed and F. tularensis-challenged macrophages. A panel of 20 top hits was further assessed by re-testing using individual shRNAs or siRNAs in THP-1 cells, HMDMs and primary human lung macrophages. Six of eight validated genes tested were also found to confer resistance to Listeria monocytogenes infection, suggesting a broadly shared host gene program for intracellular pathogens. The F. tularensis-validated hits included 'druggable' targets such as TNFRSF9, which encodes CD137. Treating HMDM with a blocking antibody to CD137 confirmed a beneficial role of CD137 in macrophage clearance of F. tularensis. These studies reveal a number of important mediators of IFN-γ activated host defense against intracellular pathogens, and implicate CD137 as a potential therapeutic target and regulator of macrophage interactions with Francisella tularensis.  相似文献   

14.
Cancer stem cells (CSC) are rare immortal cells within a tumor that are able to initiate tumor progression, development, and resistance. Advances studies show that, like normal stem cells, CSCs can be both self-renewed and given rise to many cell types, therefore form tumors. A number of cell surface markers, such as CD44, CD24, and CD133 are frequently used to identify CSCs. CD133, a transmembrane glycoprotein, either alone or in collaboration with other markers, has been mainly considered to identify CSCs from different solid tumors. However, the exactness of CD133 as a cancer stem cell biomarker has not been approved yet. The clinical importance of CD133 is as a CSC marker in many cancers. Also, it contributes to shorter survival, tumor progression, and tumor recurrence. The expression of CD133 is controlled by many extracellular or intracellular factors, such as tumor microenvironment, epigenetic factors, signaling pathways, and miRNAs. In this study, it was attempted to determine: 1) CD133 function; 2) the role of CD133 in cancer; 3) CD133 regulation; 4) the therapeutic role of CD133 in cancers.  相似文献   

15.
Endometrial cancer (EC) is the most common familiar gynecologic malignant tumor identified in the female reproductive system and has been increasing yearly. In this study, we will identify the surface markers and stem cell markers related with cancer stem cells (CSCs) of EC. Tissue samples were obtained from endometrial cancer patients during surgical procedures. Single cells were isolated from the tissues for culturing, transfection into nude mice, and histopathology analysis. RT-PCR demonstrated that the cultured cells strongly expressed stemness-related genes, such as c-Myc, Sox-2, Nanog, Oct 4A, ABCG2, BMI-1, CK-18, Nestin and β-actin. The expression of surface markers CD24, CD133, CD47, CD29, CD44, CXCR4, SSEA3 and SSEA4, CD24, and CD133 and chemokine markers such as CXCR4 were measured by flow cytometry. Then the double percentage of CD133+CXCR4+ cells constituted 7.2% and 9.3% in EC cells originated from two different patients, respectively. The CD133+CXCR4+ primary endometrial cancer cells grew faster, exhibited high expression of mRNA of stemness-related genes, produced more spheres, and had higher clonogenic ability than other subpopulations. They are also more resistant to anti-cancer drugs than other subpopulations. These findings indicate that CD133+CXCR4+ cells may possess some characteristics of CSCs in primary endometrial cancer. These cell surface markers may be useful for the development of drugs against CSC molecular targets or as a predictive marker for poor prognosis in primary endometrial cancer.  相似文献   

16.
CD133 is an antigen expressed on hematopoietic progenitor cells and on some epithelial cells. We previously reported that a commercially available antibody against CD133, CD133-2/AC141, also reacted with an intracellular protein in placental trophoblasts. Here we show by 2D electrophoresis and mass spectroscopy that this reactivity is with cytokeratin 18, a cytokeratin present in most simple epithelia. Immunohistochemistry (IHC) with CD133-2/AC141 on a trophoblast cell line displayed a staining pattern typical for the cytoskeleton. Cryostat sections of stratified epithelia lacking cytokeratin 18 did not react with CD133-2/AC141. In conclusion, care must be taken not to misinterpret staining patterns using CD133-2/AC141 in IHC.  相似文献   

17.
Glioblastoma multiforme (GBM) is a deadly primary brain malignancy. Glioblastoma stem cells (GSC), which have the ability to self-renew and differentiate into tumor lineages, are believed to cause tumor recurrence due to their resistance to current therapies. A subset of GSCs is marked by cell surface expression of CD133, a glycosylated pentaspan transmembrane protein. The study of CD133-expressing GSCs has been limited by the relative paucity of genetic tools that specifically target them. Here, we present CD133-LV, a lentiviral vector presenting a single chain antibody against CD133 on its envelope, as a vehicle for the selective transduction of CD133-expressing GSCs. We show that CD133-LV selectively transduces CD133+ human GSCs in dose-dependent manner and that transduced cells maintain their stem-like properties. The transduction efficiency of CD133-LV is reduced by an antibody that recognizes the same epitope on CD133 as the viral envelope and by shRNA-mediated knockdown of CD133. Conversely, the rate of transduction by CD133-LV is augmented by overexpression of CD133 in primary human GBM cultures. CD133-LV selectively transduces CD133-expressing cells in intracranial human GBM xenografts in NOD.SCID mice, but spares normal mouse brain tissue, neurons derived from human embryonic stem cells and primary human astrocytes. Our findings indicate that CD133-LV represents a novel tool for the selective genetic manipulation of CD133-expressing GSCs, and can be used to answer important questions about how these cells contribute to tumor biology and therapy resistance.  相似文献   

18.
Yang Z  Zhang L  Ma A  Liu L  Li J  Gu J  Liu Y 《PloS one》2011,6(12):e28405
The mammalian target of the rapamycin (mTOR) pathway, which drives cell proliferation, is frequently hyperactivated in a variety of malignancies. Therefore, the inhibition of the mTOR pathway has been considered as an appropriate approach for cancer therapy. In this study, we examined the roles of mTOR in the maintenance and differentiation of cancer stem-like cells (CSCs), the conversion of conventional cancer cells to CSCs and continuous tumor growth in vivo. In H-Ras-transformed mouse liver tumor cells, we found that pharmacological inhibition of mTOR with rapamycin greatly increased not only the CD133+ populations both in vitro and in vivo but also the expression of stem cell-like genes. Enhancing mTOR activity by over-expressing Rheb significantly decreased CD133 expression, whereas knockdown of the mTOR yielded an opposite effect. In addition, mTOR inhibition severely blocked the differentiation of CD133+ to CD133- liver tumor cells. Strikingly, single-cell culture experiments revealed that CD133- liver tumor cells were capable of converting to CD133+ cells and the inhibition of mTOR signaling substantially promoted this conversion. In serial implantation of tumor xenografts in nude BALB/c mice, the residual tumor cells that were exposed to rapamycin in vivo displayed higher CD133 expression and had increased secondary tumorigenicity compared with the control group. Moreover, rapamycin treatment also enhanced the level of stem cell-associated genes and CD133 expression in certain human liver tumor cell lines, such as Huh7, PLC/PRC/7 and Hep3B. The mTOR pathway is significantly involved in the generation and the differentiation of tumorigenic liver CSCs. These results may be valuable for the design of more rational strategies to control clinical malignant HCC using mTOR inhibitors.  相似文献   

19.
RNA interference (RNAi) was used to characterize the requirement of protein glycosylation for cell membrane stability during cytokinesis in the early embryo. This screen targeted 13 enzymes or components of polypeptide sugar transferases that initiate either N-glycosylation or three different pathways of O-glycosylation. RNAi of genes in the mucin-type and epidermal growth factor-fringe glycosylation pathways did not affect cytokinesis. However, embryos deficient in N-glycosylation exhibited a variable inability to complete cytokinesis. The most potent block in early embryonic cell division was obtained by RNAi of the polypeptide xylose transferase (ppXyl-T), which is required to initiate the proteoglycan modification pathway. Two generations of ppXyl-T RNAi-feeding treatment reduced the body size, mobility, brood size, and life span of adult animals. Embryos escaping ppXyl-T and Gal-T2 RNAi lethality develop to adulthood but have cytokinesis-deficient offspring, suggesting that glycosyltransferases in the proteoglycan pathway are maternal proteins in the early embryo. Gal-T2::GFP fusions and anti-Gal-T2 antibodies revealed a perinuclear staining pattern, consistent with the localization of the Golgi apparatus. RNAi in green fluorescent protein (GFP)-tagged strains to follow tubulin, PIE-1, and chromatin showed that deficient proteoglycan biosynthesis uncouples the stability of newly formed cell membranes from cytokinesis, whereas cleavage furrow initiation, mitotic spindle function, karyokinesis, and partitioning of intrinsic components are intact.  相似文献   

20.
Ma S  Tang KH  Chan YP  Lee TK  Kwan PS  Castilho A  Ng I  Man K  Wong N  To KF  Zheng BJ  Lai PB  Lo CM  Chan KW  Guan XY 《Cell Stem Cell》2010,7(6):694-707
A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor, called tumor-initiating cells (TICs) or cancer stem cells (CSCs). Here we describe the identification and characterization of such cells from hepatocellular carcinoma (HCC) using the marker CD133. CD133 accounts for approximately 1.3%-13.6% of the cells in the bulk tumor of human primary HCC samples. When compared with their CD133? counterparts, CD133(+) cells not only possess the preferential ability to form undifferentiated tumor spheroids in vitro but also express an enhanced level of stem cell-associated genes, have a greater ability to form tumors when implanted orthotopically in immunodeficient mice, and can be serially passaged into secondary animal recipients. Xenografts resemble the original human tumor and maintain a similar percentage of tumorigenic CD133(+) cells. Quantitative PCR analysis of 41 separate HCC tissue specimens with follow-up data found that CD133(+) tumor cells were frequently detected at low quantities in HCC, and their presence was also associated with worse overall survival and higher recurrence rates. Subsequent differential microRNA expression profiling of CD133(+) and CD133? cells from human HCC clinical specimens and cell lines identified an overexpression of miR-130b in CD133(+) TICs. Functional studies on miR-130b lentiviral-transduced CD133? cells demonstrated superior resistance to chemotherapeutic agents, enhanced tumorigenicity in vivo, and a greater potential for self renewal. Conversely, antagonizing miR-130b in CD133(+) TICs yielded an opposing effect. The increased miR-130b paralleled the reduced TP53INP1, a known miR-130b target. Silencing TP53INP1 in CD133? cells enhanced both self renewal and tumorigenicity in vivo. Collectively, miR-130b regulates CD133(+) liver TICs, in part, via silencing TP53INP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号