首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood plasma samples from HIV-1-infected persons contain elevated glutamate concentrations up to 6-fold the normal level and relatively low concentrations of acid-soluble thiol (i.e. decreased cysteine concentrations). The intracellular glutathione concentration in peripheral blood-mononuclear cells (PBMC) and monocytes from HIV antibody-positive persons are also significantly decreased. Therapy with azidothymidine (AZT) causes a substantial recovery of the plasma thiol levels; but glutamate levels remain significantly elevated and intracellular glutathione levels remain low. Cell culture experiments with approximately physiological amino-acid concentrations revealed that variations of the extracellular cysteine concentration have a strong influence on the intracellular glutathione level and the rate of DNA synthesis [( 3H]thymidine incorporation) in T cell clones and human and murine lymphocyte preparations even in the presence of several-fold higher cystine and methionine concentrations. Cysteine cannot be replaced by a corresponding increase of the extracellular cystine or methionine concentration. These experiments suggest strongly that the low cysteine concentration in the plasma of HIV-infected persons may play a role in the pathogenetic mechanism of the acquired immunodeficiency syndrome.  相似文献   

2.
The gene for cystathionine beta-synthase (CBS) is located on chromosome 21 and is overexpressed in children with Down syndrome (DS), or trisomy 21. The dual purpose of the present study was to evaluate the impact of overexpression of the CBS gene on homocysteine metabolism in children with DS and to determine whether the supplementation of trisomy 21 lymphoblasts in vitro with selected nutrients would shift the genetically induced metabolic imbalance. Plasma samples were obtained from 42 children with karyotypically confirmed full trisomy 21 and from 36 normal siblings (mean age 7.4 years). Metabolites involved in homocysteine metabolism were measured and compared to those of normal siblings used as controls. Lymphocyte DNA methylation status was determined as a functional endpoint. The results indicated that plasma levels of homocysteine, methionine, S-adenosylhomocysteine, and S-adenosylmethionine were all significantly decreased in children with DS and that their lymphocyte DNA was hypermethylated relative to that in normal siblings. Plasma levels of cystathionine and cysteine were significantly increased, consistent with an increase in CBS activity. Plasma glutathione levels were significantly reduced in the children with DS and may reflect an increase in oxidative stress due to the overexpression of the superoxide dismutase gene, also located on chromosome 21. The addition of methionine, folinic acid, methyl-B(12), thymidine, or dimethylglycine to the cultured trisomy 21 lymphoblastoid cells improved the metabolic profile in vitro. The increased activity of CBS in children with DS significantly alters homocysteine metabolism such that the folate-dependent resynthesis of methionine is compromised. The decreased availability of homocysteine promotes the well-established "folate trap," creating a functional folate deficiency that may contribute to the metabolic pathology of this complex genetic disorder.  相似文献   

3.
Rats were fed on a 10% casein (10C) diet, 30% casein (30C) diet, 10C+0.5% methionine diet, or 30C+0.5% methionine diet for 14 d to investigate the relationship between the dietary protein level and plasma homocysteine concentration. The plasma homocysteine concentration was significantly higher in the rats fed on the 10C diet than in the rats fed on the 30C diet, and this phenomenon persisted even under the condition of methionine supplementation. The activity of hepatic cystathionine β-synthase (CBS) was significantly lower in the rats fed on the 10% casein diets than in the rats fed on the 30% casein diets, irrespective of methionine supplementation. This is the first demonstration of a low-protein diet increasing the plasma homocysteine concentration in experimental animals. It is suggested that the decreased CBS activity might be associated, at least in part, with the hyperhomocysteinemia caused by the low-casein diet.  相似文献   

4.
Rats were fed on a 10% casein (10C) diet, 30% casein (30C) diet, 10C+0.5% methionine diet, or 30C+0.5% methionine diet for 14 d to investigate the relationship between the dietary protein level and plasma homocysteine concentration. The plasma homocysteine concentration was significantly higher in the rats fed on the 10C diet than in the rats fed on the 30C diet, and this phenomenon persisted even under the condition of methionine supplementation. The activity of hepatic cystathionine beta-synthase (CBS) was significantly lower in the rats fed on the 10% casein diets than in the rats fed on the 30% casein diets, irrespective of methionine supplementation. This is the first demonstration of a low-protein diet increasing the plasma homocysteine concentration in experimental animals. It is suggested that the decreased CBS activity might be associated, at least in part, with the hyperhomocysteinemia caused by the low-casein diet.  相似文献   

5.
Derangements in methionine metabolism are a hallmark of cancers and homocystinuria, an inborn error of metabolism. In this study, the metabolic consequences of the pathological changes associated with the key pathway enzymes, methionine adenosyl transferase (MAT), glycine N-methyl transferase (GNMT) and cystathionine beta-synthase (CBS) as well as an activation of polyamine metabolism, were analyzed using a simple mathematical model describing methionine metabolism in liver. The model predicts that the mere loss of allosteric regulation of CBS by adenosylmethionine (AdoMet) leads to an increase in homocysteine concentration. This is consistent with the experimental data on the corresponding genetic defects, which specifically impair allosteric activation but not basal enzyme activity. Application of the characteristics of transformed hepatocytes to our model, i.e., substitution of the MAT I/III isozyme by MAT II, loss of GNMT activity and activation of polyamine biosynthesis, leads to the prediction of a significantly different dependence of methionine metabolism on methionine concentrations. The theoretical predictions were found to be in good agreement with experimental data obtained with the human hepatoma cell line, HepG2.  相似文献   

6.
We previously reported that all‐trans‐retinoic acid (ATRA) induced apoptosis in N‐acetylglucosaminyltransferase V (GnT‐V) repressed human hepatocarcinoma 7721 (GnT‐V‐AS/7721) cells via endoplasmic reticulum (ER) stress. In addition to confirming these findings, we further found that ATRA repressed the expression of betaine‐homocysteine methyltransferase (BHMT) and cystathionine‐β‐synthase (CBS), which are key enzymes that are involved in homocysteine metabolism, increased the level of intracellular homocysteine, and decreased the glutathione (GSH) level in GnT‐V‐AS/7721 cells. To investigate the effect of ATRA on homocysteine metabolism, cells were challenged with exogenous homocysteine. In GnT‐V‐AS/7721 cells with ATRA treatment, a significant elevation of intracellular homocysteine levels suggests that ATRA perturbs homocysteine metabolism in GnT‐V‐AS/7721 cells and, therefore, sensitizes the cells to homocysteine‐induced ER stress. An obvious increase in the levels of GRP78/Bip protein and spliced XBP1 mRNA were observed. Furthermore, we observed that ATRA blunted the homocysteine‐induced increase of GSH only in GnT‐V‐AS/7721 cells. These results demonstrate that ATRA intensifies ER stress and induces apoptosis in GnT‐V‐AS/7721 cells by disturbing homocysteine metabolism through the down‐regulation of CBS and BHMT, depleting the cellular GSH and, in turn, altering the cellular redox status. In addition, we showed that ATRA did not trigger ER stress, induce apoptosis, or affect homocysteine metabolism in L02 cells, which is a cell type that is derived from normal liver tissue. These results provide support for the hypothesis that ATRA is an anticancer agent. J. Cell. Biochem. 109: 468–477, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Although elevated levels of homocysteine (Hcy) known as hyperhomocysteinemia (HHcy) are associated with increased inflammation and vascular remodeling, the mechanism of Hcy-mediated inflammation and vascular remodeling is unclear. The matrix metalloproteinases (MMPs) and adhesion molecules play an important role in vascular remodeling. We hypothesized that HHcy induces inflammation by increasing adhesion molecules and matrix protein expression. Endothelial cells were supplemented with high methionine, and Hcy accumulation was measured by HPLC. Nitric oxide (NO) bioavailability was detected by a NO probe. The protein expression was measured by Western blot analysis. MMP-9 activity was detected by gelatin-gel zymography. We demonstrated that methionine supplement promoted upregulation of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) through increased Hcy accumulation. In addition, increased synthesis of collagen type-1 was also observed. MMP-9 gene expression and protein activity were increased in methionine supplement groups. 3-Deazaadenosine (DZA), an adenosine analogue, prevented high methionine-induced ICAM-1 and VCAM-1 expression and collagen type-1 synthesis. Transfection of endothelial cells with cystathionine-β-synthase (CBS) gene construct, which converts Hcy to cystathionine, reduced Hcy accumulation in high methionine-fed cells. CBS gene transfection reduced the inflammatory response, as evident by attenuated ICAM-1 and VCAM-1 expression. Furthermore, collagen type-1 expression and MMP-9 activity were dramatically attenuated with CBS gene transfection. These results suggested that methionine supplement increased Hcy accumulation, which was associated with inflammatory response and matrix remodeling such as collagen type-1 synthesis and MMP-9 activity. However, in vitro DZA and CBS gene therapy successfully treated the HHcy-induced inflammatory reaction in the methionine metabolism pathway. extracellular matrix; matrix metalloproteinase-9; intercellular cell adhesion molecule-1; vascular cell adhesion molecule-1; collagen type-1; hyperhomocysteinemia  相似文献   

8.
Selenium deficiency and vitamin E deficiency both affect xenobiotic metabolism and toxicity. In addition, selenium deficiency causes changes in the activity of some glutathione-requiring enzymes. We have studied glutathione metabolism in isolated hepatocytes from selenium-deficient, vitamin E-deficient, and control rats. Cell viability, as measured by trypan blue exclusion, was comparable for all groups during the 5-h incubation. Freshly isolated hepatocytes had the same glutathione concentration regardless of diet group. During the incubation, however, the glutathione concentration in selenium-deficient hepatocytes rose to 1.4 times that in control hepatocytes. The selenium-deficient cells also released twice as much glutathione into the incubation medium as did the control cells. Total glutathione (intracellular plus extracellular) in the incubation flask increased from 47.7 +/- 8.9 to 152 +/- 16.5 nmol/10(6) selenium-deficient cells over 5 h compared with an increase from 46.7 +/- 7.1 to 92.0 +/- 17.4 nmol/10(6) control cells and from 47.7 +/- 11.7 to 79.5 +/- 24.9 nmol/10(6) vitamin E-deficient cells. This overall increase in glutathione concentration suggested that glutathione synthesis was accelerated by selenium deficiency. The activity of gamma-glutamylcysteine synthetase was twice as great in selenium-deficient liver supernatant (105,000 X g) as in vitamin E-deficient or control liver supernatant (105,000 X g). Hemoglobin-free perfused livers were used to determine the form of glutathione released and its route. Selenium-deficient livers released 4 times as much GSH into the caval perfusate as did control livers. Plasma glutathione concentration in selenium-deficient rats was found to be 2-fold that in control rats, suggesting that increased GSH synthesis and release is an in vivo phenomenon associated with selenium deficiency.  相似文献   

9.
Cardiomyocyte hypertrophy induced by phenylephrine (PE) is accompanied by suppression of cytochrome c oxidase (CCO) activity, and copper (Cu) supplementation restores CCO activity and reverses the hypertrophy. The present study was aimed to understand the mechanism of PE-induced decrease in CCO activity. Primary cultures of neonatal rat cardiomyocytes were treated with PE at a final concentration of l00 µM in cultures for 72 h to induce cell hypertrophy. The CCO activity was determined by enzymatic assay and changes in CCO subunit COX-IV as well as copper chaperones for CCO (COX17, SCO2, and COX11) were determined by Western blotting. PE treatment increased both intracellular and extracellular homocysteine concentrations and decreased intracellular Cu concentrations. Studies in vitro found that homocysteine and Cu form complexes. Inhibition of the intracellular homocysteine synthesis in the PE-treated cardiomyocytes prevented the increase in the extracellular homocysteine concentration, retained the intracellular Cu concentration, and preserved the CCO activity. PE treatment decreased protein concentrations of the COX-IV, and the Cu chaperones COX17, COX11, and SCO2. These PE effects were prevented by either inhibition of the intracellular homocysteine synthesis or Cu supplementation. Therefore, PE-induced elevation of homocysteine restricts Cu availability through its interaction with Cu and suppression of Cu chaperones, leading to the decrease in CCO enzyme activity.  相似文献   

10.
11.
To determine the reductive process of extracellular dehydroascorbic acid (DHA), molecules (homocysteine, homocysteine thiolactone, methionine, cysteine, and homoserine) were tested to identify those with the potential to reduce DHA to ascorbic acid (AA). Homocysteine (Hcy) was the most potent of the molecules tested. The efficacy of Hcy was compared with that of other molecules able to reduce DHA (reduced glutathione (GSH) and cysteine (Cy)). Although all three molecules were able to reduce DHA, GSH and Cy were not to reduce DHA to AA at concentrations lower than 100 micromol/l, and only less than 5% DHA was reduced to AA at concentrations of 200-300 micromol/l. In contrast, Hcy reduced DHA to AA stoichiometrically at concentrations as low as 10 micromol/l. In Jurkat and U937 cells, the increasing concentrations of extracellular Hcy suppressed intracellular dehydroascorbic acid uptake, indicating that extracellular reduction of DHA by Hcy leads to decreasing extracellular DHA available for its intracellular uptake. Simultaneous oxidation and reduction of Hcy and DHA were accelerated extracellularly in the presence of quercetin, an inhibitor of DHA uptake, suggesting that extracellular ascorbic acid concentration increased via blocking DHA uptake by quercetin and reducing extracellular DHA by Hcy. The effect of homocysteine on DHA reduction and uptake was confirmed with human umbilical vein endothelial cells. The oxidation of Hcy also prevented the decrease in DNA synthesis in human umbilical vein endothelial cells, which would occur following exposure to Hcy.  相似文献   

12.
应激对同型半胱氨酸代谢的负性调节   总被引:8,自引:0,他引:8  
Wu SQ  Qian LJ 《生理学报》2004,56(4):521-524
基于应激对高同型半胱氨酸血症具有诱导作用,本文探索了应激致同型半胱氨酸(homocysteine,HCY)代谢变化的关键环节,并初步揭示了该作用的意义。以束缚应激法建立大鼠应激模型,采用高压液相-荧光检测法测定血浆HCY水平,用放射性酶学法检测不同组织中胱硫醚β合成酶(cystathionine beta-synthase,CBS)活性的变化,以及RT-PCR法和Northern blot法检测CBS mRNA水平的变化。结果可见,束缚应激可导致大鼠高同型半胱氨酸血症的发生;CBS在肝脏具有最强的代谢活性,肾脏其次,而心脏和血液中活性极低;应激大鼠肝脏CBS活性和mRNA水平均显著降低(P<0.05),应激3周时分别为对照组的70.6%±5.9%和55.9%±4.3%。以上研究结果表明,应激对HCY转硫代谢途径存在负性调节作用,其对肝脏CBS基因转录水平的调控是应激所致高同型半胱氨酸血症发生的重要诱因;肝脏是应激对HCY代谢调节的主要场所。  相似文献   

13.
Methionine metabolism forms homocysteine via transmethylation. Homocysteine is either 1) condensed to form cystathionine, which is cleaved to form cysteine, or 2) remethylated back to methionine. Measuring this cycle with the use of isotopically labeled methionine tracers is problematic, because the tracer is infused into and measured from blood, whereas methionine metabolism occurs inside cells. Because plasma homocysteine and cystathionine arise from intracellular metabolism of methionine, plasma homocysteine and cystathionine enrichments can be used to define intracellular methionine enrichment during an infusion of labeled methionine. Eight healthy, postabsorptive volunteers were given a primed continuous infusion of [1-13C]methionine and [methyl-2H(3)]methionine for 8 h. Enrichments in plasma methionine, [13C]homocysteine and [13C]cystathionine were measured. In contrast to plasma methionine enrichments, the plasma [13C]homocysteine and [13C]cystathionine enrichments rose to plateau slowly (rate constant: 0.40 +/- 0.03 and 0.49 +/- 0.09 h(-1), respectively). The enrichment ratios of plasma [13C]homocysteine to [13C]methionine and [13C]cystathionine to [13C]methionine were 58 +/- 3 and 54 +/- 3%, respectively, demonstrating a large intracellular/extracellular partitioning of methionine. These values were used to correct methionine kinetics. The corrections increase previously reported rates of methionine kinetics by approximately 40%.  相似文献   

14.
Methionine is an essential amino acid involved in many significant intracellular processes. Aberrations in methionine metabolism are associated with a number of complex pathologies. Liver plays a key role in regulation of blood methionine level. Investigation of methionine distribution between hepatocytes and medium is crucial for understanding the mechanisms of this regulation. For the first time, we analyzed the distribution of methionine between hepatocytes and incubation medium using direct measurements of methionine concentrations. Our results revealed a fast and reversible transport of methionine through the cell membrane that provides almost uniform distribution of methionine between hepatocytes and incubation medium. The steady-state ratio between intracellular and extracellular methionine concentrations was established within a few minutes. This ratio was found to be 1.06 ± 0.38, 0.89 ± 0.26, 0.67 ± 0.16 and 0.82 ± 0.06 at methionine concentrations in the medium of 64 ± 19, 152 ± 39, 413 ± 55, and 1,204 ± 104 μmol/L, respectively. The fast and uniform distribution of methionine between hepatocytes and extracellular compartments provides a possibility for effective regulation of blood methionine levels due to methionine metabolism in hepatocytes.  相似文献   

15.
Mosharov E  Cranford MR  Banerjee R 《Biochemistry》2000,39(42):13005-13011
Homocysteine is a key junction metabolite in methionine metabolism. It suffers two major metabolic fates: transmethylation catalyzed by methionine synthase or betaine homocysteine methyl transferase and transsulfuration catalyzed by cystathionine beta-synthase leading to cystathionine. The latter is subsequently converted to cysteine, a precursor of glutathione. Studies with purified mammalian methionine synthase and cystathionine beta-synthase have revealed the oxidative sensitivity of both junction enzymes, suggesting the hypothesis that redox regulation of this pathway may be physiologically significant. This hypothesis has been tested in a human hepatoma cell line in culture in which the flux of homocysteine through transsulfuration under normoxic and oxidative conditions has been examined. Addition of 100 microM H(2)O(2) or tertiary butyl hydroperoxide increased cystathionine production 1.6- and 2.1-fold from 82 +/- 7 micromol h(-)(1) (L of cells)(-)(1) to 136 +/- 15 and 172 +/- 23 micromol h(-)(1) (L of cells)(-)(1), respectively. The increase in homocysteine flux through the transsulfuration pathway exhibited a linear dose dependence on the concentrations of both oxidants (50-200 microM H(2)O(2) and 10-200 microM tertiary butyl hydroperoxide). Furthermore, our results reveal that approximately half of the intracellular glutathione pool in human liver cells is derived from homocysteine via the transsulfuration pathway. The redox sensitivity of the transsulfuration pathway can be rationalized as an autocorrective response that leads to an increased level of glutathione synthesis in cells challenged by oxidative stress. In summary, this study demonstrates the importance of the homocysteine-dependent transsulfuration pathway in the maintenance of the intracellular glutathione pool, and the regulation of this pathway under oxidative stress conditions. Aberrations in this pathway could compromise the redox buffering capacity of cells, which may in turn be related to the pathophysiology of the different homocysteine-related diseases.  相似文献   

16.
探讨高蛋氨酸饲料诱导高同型半胱氨酸血症的适应剂量及其对相关代谢的影响.选择质量分数1%、2%和3%蛋氨酸饲料喂饲大鼠,高压液相色谱法测定血清同型半胱氨酸、半胱氨酸和还原形谷胱甘肽含量.结果表明饲料中1%蛋氨酸可以使血清同型半胱氨酸水平升高且无生长抑制等毒副作用,2%和3%蛋氨酸饲料喂养大鼠后出现摄食量减少和生长抑制等毒...  相似文献   

17.
Although elevated levels of homocysteine (Hcy) known as hyperhomocysteinemia (HHcy) are associated with increased inflammation and vascular remodeling, the mechanism of Hcy-mediated inflammation and vascular remodeling is unclear. The matrix metalloproteinases (MMPs) and adhesion molecules play an important role in vascular remodeling. We hypothesized that HHcy induces inflammation by increasing adhesion molecules and matrix protein expression. Endothelial cells were supplemented with high methionine, and Hcy accumulation was measured by HPLC. Nitric oxide (NO) bioavailability was detected by a NO probe. The protein expression was measured by Western blot analysis. MMP-9 activity was detected by gelatin-gel zymography. We demonstrated that methionine supplement promoted upregulation of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) through increased Hcy accumulation. In addition, increased synthesis of collagen type-1 was also observed. MMP-9 gene expression and protein activity were increased in methionine supplement groups. 3-Deazaadenosine (DZA), an adenosine analogue, prevented high methionine-induced ICAM-1 and VCAM-1 expression and collagen type-1 synthesis. Transfection of endothelial cells with cystathionine-beta-synthase (CBS) gene construct, which converts Hcy to cystathionine, reduced Hcy accumulation in high methionine-fed cells. CBS gene transfection reduced the inflammatory response, as evident by attenuated ICAM-1 and VCAM-1 expression. Furthermore, collagen type-1 expression and MMP-9 activity were dramatically attenuated with CBS gene transfection. These results suggested that methionine supplement increased Hcy accumulation, which was associated with inflammatory response and matrix remodeling such as collagen type-1 synthesis and MMP-9 activity. However, in vitro DZA and CBS gene therapy successfully treated the HHcy-induced inflammatory reaction in the methionine metabolism pathway.  相似文献   

18.
Suspensions of freshly isolated rat hepatocytes and renal tubular cells contain high levels of reduced glutathione (GSH), which exhibits half-lives of 3-5 and 0.7-1 h, respectively. In both cells types the availability of intracellular cysteine is rate limiting for GSH biosynthesis. In hepatocytes, methionine is actively converted to cysteine via the cystathionine pathway, and hepatic glutathione biosynthesis is stimulated by the presence of methionine in the medium. In contrast, extracellular cystine can support renal glutathione synthesis; several disulfides, including cystine, are rapidly taken up by renal cells (but not by hepatocytes) and are reduced to the corresponding thiols via a GSH-linked reaction sequence catalyzed by thiol transferase and glutathione reductase (NAD(P)H). During incubation, hepatocytes release both GSH and glutathione disulfide (GSSG) into the medium; the rate of GSSG efflux is markedly enhanced during hydroperoxide metabolism by glutathione peroxidase. This may lead to GSH depletion and cell injury; the latter seems to be initiated by a perturbation of cellular calcium homeostasis occurring in the glutathione-depleted state. In contrast to hepatocytes, renal cells metabolize extracellular glutathione and glutathione S-conjugates formed during drug biotransformation to the component amino acids and N-acetyl-cysteine S-conjugates, respectively. In addition, renal cells contain a thiol oxidase acting on extracellular GSH and several other thiols. In conclusion, our findings with isolated cells mimic the physiological situation characterized by hepatic synthesis and renal degradation of plasma glutathione and glutathione S-conjugates, and elucidate some of the underlying biochemical mechanisms.  相似文献   

19.
After protracted low level arsenic exposure, the normal human prostate epithelial cell line RWPE-1 acquires a malignant phenotype with DNA hypomethylation, indicative of disrupted methyl metabolism, and shows arsenic adaptation involving glutathione overproduction and enhanced arsenic efflux. Thus, the interplay between methyl and glutathione metabolism during this progressive arsenic adaptation was studied. Arsenic-treated cells showed a time-dependent increase in LC50 and a marked increase in homocysteine (Hcy) levels. A marked suppression of S-adenosylmethionine (SAM) levels occurred with decreased methionine adenosyltransferase 2A (converts methionine to SAM) expression and increased negative regulator methionine adenosyltransferase B, suggesting reduced conversion of Hcy to SAM. Consistent with Hcy overproduction, activity and expression of S-adenosylhomocysteine hydrolase (converts S-adenosylhomocysteine to Hcy) were both increased. Expression of cystathionine beta-synthase, a key gene in the transsulfuration pathway, and various glutathione production genes were increased, resulting in a 5-fold increase in glutathione. Arsenic efflux increased along with expression of ATP-binding cassette protein C1, which effluxes arsenic as a glutathione conjugate. Evidence of genomic DNA hypomethylation was observed during early arsenic exposure, indicating that the disruption in methyl metabolism had a potential impact related to oncogenesis. Thus, cellular arsenic adaptation is a dynamic, progressive process that involves decreased SAM recycling and concurrent accumulation of Hcy, which is channeled via transsulfuration to increase glutathione and enhance arsenic efflux but may also impact the carcinogenic process.  相似文献   

20.
Determination of the transient increase in plasma homocysteine following administration of excess methionine is an established procedure for the diagnosis of defects in homocysteine metabolism in patients. This so-called methionine loading test has been used for 25 years, but the knowledge of the response of various cell types to excess methionine is limited. In the present paper we investigated homocysteine export from various cell types cultured in the presence of increasing concentrations (15-1,000 microM) of methionine. For comparison of homocysteine export, the export rates per million cells were plotted versus cell density for proliferating cells, and versus time for quiescent cells. The homocysteine export from growing cells was greatest during early to mid-exponential growth phase, and then decreased as a function of cell density. The export rate was higher from phytohemagglutinin-stimulated than non-stimulated lymphocytes, and higher from proliferating than from quiescent fibroblasts. The hepatocytes showed highest export rate among the cell types investigated. The enhancement of homocysteine export by excess methionine ranged from no stimulation to marked enhancement, depending on cell type investigated, and three different response patterns could be distinguished: 1) quiescent fibroblasts and growing murine lymphoma cell showed no significant increase in homocysteine export following methionine loading; export from human lymphocytes was only slightly enhanced in the presence of excess methionine; 2) the homocysteine export from proliferating hepatoma cells and benign and transformed fibroblasts was stimulated three to eightfold by increasing the methionine concentration in the medium from 15 to 1,000 microM; and 3) the response to methionine loading was particularly increased (about 15-fold) in non-transformed primary hepatocytes in stationary culture. The results outline a potentially useful procedure for the comparison of homocysteine export during cell growth in the presence of various concentrations of methionine. The results are discussed in relation to the special feature of homocysteine metabolism in various cell types and tissues including liver, and to the possible source of plasma homocysteine following methionine loading in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号