首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Designed armadillo repeat proteins (dArmRP) are α‐helical solenoid repeat proteins with an extended peptide binding groove that were engineered to develop a generic modular technology for peptide recognition. In this context, the term “peptide” not only denotes a short unstructured chain of amino acids, but also an unstructured region of a protein, as they occur in termini, loops, or linkers between folded domains. Here we report two crystal structures of dArmRPs, in complex with peptides fused either to the N‐terminus of Green Fluorescent Protein or to the C‐terminus of a phage lambda protein D. These structures demonstrate that dArmRPs bind unfolded peptides in the intended conformation also when they constitute unstructured parts of folded proteins, which greatly expands possible applications of the dArmRP technology. Nonetheless, the structures do not fully reflect the binding behavior in solution, that is, some binding sites remain unoccupied in the crystal and even unexpected peptide residues appear to be bound. We show how these differences can be explained by restrictions of the crystal lattice or the composition of the crystallization solution. This illustrates that crystal structures have to be interpreted with caution when protein–peptide interactions are characterized, and should always be correlated with measurements in solution.  相似文献   

2.
Designed armadillo repeat proteins (dArmRP) are promising modular proteins for the engineering of binding molecules that recognize extended polypeptide chains. We determined the structure of a dArmRP containing five internal repeats and 3rd generation capping repeats in three different states by X‐ray crystallography: without N‐terminal His6‐tag and in the presence of calcium (YM5A/Ca2+), without N‐terminal His6‐tag and in the absence of calcium (YM5A), and with N‐terminal His6‐tag and in the presence of calcium (His‐YM5A/Ca2+). All structures show different quaternary structures and superhelical parameters. His‐YM5A/Ca2+ forms a crystallographic dimer, which is bridged by the His6‐tag, YM5A/Ca2+ forms a domain‐swapped tetramer, and only in the absence of calcium and the His6‐tag, YM5A forms a monomer. The changes of superhelical parameters are a consequence of calcium binding, because calcium ions interact with negatively charged residues, which can also participate in the modulation of helix dipole moments between adjacent repeats. These observations are important for further optimizations of dArmRPs and provide a general illustration of how construct design and crystallization conditions can influence the exact structure of the investigated protein.  相似文献   

3.
The armadillo domain is a right‐handed super‐helix of repeating units composed of three α‐helices each. Armadillo repeat proteins (ArmRPs) are frequently involved in protein–protein interactions, and because of their modular recognition of extended peptide regions they can serve as templates for the design of artificial peptide binding scaffolds. On the basis of sequential and structural analyses, different consensus‐designed ArmRPs were synthesized and show high thermodynamic stabilities, compared to naturally occurring ArmRPs. We determined the crystal structures of four full‐consensus ArmRPs with three or four identical internal repeats and two different designs for the N‐ and C‐caps. The crystal structures were refined at resolutions ranging from 1.80 to 2.50 Å for the above mentioned designs. A redesign of our initial caps was required to obtain well diffracting crystals. However, the structures with the redesigned caps caused domain swapping events between the N‐caps. To prevent this domain swap, 9 and 6 point mutations were introduced in the N‐ and C‐caps, respectively. Structural and biophysical analysis showed that this subsequent redesign of the N‐cap prevented domain swapping and improved the thermodynamic stability of the proteins. We systematically investigated the best cap combinations. We conclude that designed ArmRPs with optimized caps are intrinsically stable and well‐expressed monomeric proteins and that the high‐resolution structures provide excellent structural templates for the continuation of the design of sequence‐specific modular peptide recognition units based on armadillo repeats.  相似文献   

4.
5.
It is becoming increasingly clear that many proteins start to fold cotranslationally before the entire polypeptide chain has been synthesized on the ribosome. One class of proteins that a priori would seem particularly prone to cotranslational folding is repeat proteins, that is, proteins that are built from an array of nearly identical sequence repeats. However, while the folding of repeat proteins has been studied extensively in vitro with purified proteins, only a handful of studies have addressed the issue of cotranslational folding of repeat proteins. Here, we have determined the structure and studied the cotranslational folding of a β-helix pentarepeat protein from the human pathogen Clostridium botulinum—a homolog of the fluoroquinolone resistance protein MfpA—using an assay in which the SecM translational arrest peptide serves as a force sensor to detect folding events. We find that cotranslational folding of a segment corresponding to the first four of the eight β-helix coils in the protein produces enough force to release ribosome stalling and that folding starts when this unit is ~ 35 residues away from the P-site, near the distal end of the ribosome exit tunnel. An additional folding transition is seen when the whole PENT moiety emerges from the exit tunnel. The early cotranslational formation of a folded unit may be important to avoid misfolding events in vivo and may reflect the minimal size of a stable β-helix since it is structurally homologous to the smallest known β-helix protein, a four-coil protein that is stable in solution.  相似文献   

6.
We report the high-yield heterologous expression of bioactive θ-defensin RTD-1 inside Escherichia coli cells by making use of intracellular protein trans-splicing in combination with a high efficient split-intein. RTD-1 is a small backbone-cyclized polypeptide with three disulfide bridges and a natural inhibitor of anthrax lethal factor protease. Recombinant RTD-1 was natively folded and able to inhibit anthrax lethal factor protease. In-cell expression of RTD-1 was very efficient and yielded ≈0.7 mg of folded RTD-1 per gram of wet E. coli cells. This approach was used to generate of a genetically-encoded RTD-1-based peptide library in live E. coli cells. These results clearly demonstrate the possibility of using genetically-encoded RTD-1-based peptide libraries in live E. coli cells, which is a critical first step for developing in-cell screening and directed evolution technologies using the cyclic peptide RTD-1 as a molecular scaffold.  相似文献   

7.
Targeting Hsp90-Cdc37 protein-protein interaction (PPI) is becoming an alternative approach for future anti-cancer drug development. We previously reported the discovery of an eleven-residue peptide (Pep-1) with micromolar activity for the disruption of Hsp90-Cdc37 PPI. Efforts to improve upon the Pep-1 led to the discovery of more potent modulators for Hsp90-Cdc37 PPI. Through the analysis of peptides binding patterns, more peptides were designed for further verification which resulted in Pep-5, the shortest peptide targeting Hsp90-Cdc37, exerting the optimal structure and the most efficient binding mode. Subsequent MD simulation analysis also confirmed that Pep-5 could perform more stable binding ability and better ligand properties than Pep-1. Under the premise of retentive binding capacity, Pep-5 exhibited lower molecular weight and higher ligand efficiency with a Kd value of 5.99 μM (Pep-1 Kd = 6.90 μM) in both direct binding determination and biological evaluation. The optimal and shortest Pep-5 might provide a breakthrough and a better model for the future design of small molecule inhibitors targeting Hsp90-Cdc37 PPI.  相似文献   

8.
Mouse prostate membrane-associated proteins of the annexin family showed changes in SUMOylation during androgen treatment. Among these the calcium-binding annexin A1 protein (ANXA1) was chosen for further characterization given its role in protein secretion and cancer. SUMOylation of ANXA1 was confirmed by overexpressing SUMO-1 in LNCaP cells. Site-directed mutagenesis indicated that K257 located in a SUMOylation consensus motif in the C-terminal calcium-binding DA3 repeat domain is SUMOylated. Mutation of the N-terminal Y21 decreased markedly the SUMOylation signal while EGF stimulation increased ANXA1 SUMOylation. A structural analysis of ANXA1 revealed that K257 is located in a hot spot where Ca2 + and SUMO-1 bind and where a nuclear export signal and a polyubiquitination site are also present. Also, Y21 is buried inside an α-helix structure in the Ca2 +-free conformation implying that Ca2 + binding, and the subsequent expelling of the N-terminal α-helix in a disordered conformation, is permissive for its phosphorylation. These results show for the first time that SUMOylation can be regulated by an external signal (EGF) and indicate the presence of a cross-talk between the N-terminal and C-terminal domains of ANXA1 through post-translational modifications.  相似文献   

9.
Somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 is age-dependent, tissue-specific and expansion-biased, contributing toward the tissue-specificity and progressive nature of the symptoms. Previously, using regression modelling of repeat instability we showed that variation in the rate of somatic expansion in blood DNA contributes toward variation in age of onset, directly implicating somatic expansion in the disease pathway. Here, we confirm these results using a larger more genetically homogenous Costa Rican DM1 cohort (p < 0.001). Interestingly, we also provide evidence that supports subtle sex-dependent differences in repeat length-dependent age at onset and somatic mutational dynamics. Previously, we demonstrated that variation in the rate of somatic expansion was a heritable quantitative trait. Given the important role that DNA mismatch repair genes play in mediating expansions in mouse models, we tested for modifier gene effects with 13 DNA mismatch gene polymorphisms (one each in MSH2, PMS2, MSH6 and MLH1; and nine in MSH3). After correcting for allele length and age effects, we identified three polymorphisms in MSH3 that were associated with variation in somatic instability: Rs26279 (p = 0.003); Rs1677658 (p = 0.009); and Rs10168 (p = 0.031). However, only the association with Rs26279 remained significant after multiple testing correction. Although we revealed a statistically significant association between Rs26279 and somatic instability, we did not detect an association with the age at onset. Individuals with the A/A genotype for Rs26279 tended to show a greater propensity to expand the CTG repeat than other genotypes. Interestingly, this SNP results in an amino acid change in the critical ATPase domain of MSH3 and is potentially functionally dimorphic. These data suggest that MSH3 is a key player in generating somatic variation in DM1 patients and further highlight MSH3 as a potential therapeutic target.  相似文献   

10.
We investigated the effect of pressure on the helix–coil transition of an Ala-rich peptide (AK16: YGAAKAAAAKAAAAKA-NH2) in aqueous solution by FT-IR spectroscopy. The spectra of the amide I' region of AK16 in aqueous solution was decomposed into some component bands using a curve fitting method. The peak at around 1635 cm ?1 corresponding to the solvent exposed α-helix conformer increases with increasing pressures, while the peak at around 1655 cm ?1 corresponding to the random coil conformer decreases. From the pressure dependence of the band intensities, we determined the volume change from the α-helix to random coil conformers of AK16 to be + 10.5 ± 0.3 cm3/mol. The positive volume change is different from the negative volume change generally observed in the pressure denaturation of proteins.  相似文献   

11.
The growth of the maxillary canine teeth of the babirusa (genus Babyrousa) was studied on a sample of 149 adult male babirusa skulls from twenty-two international museum and private collections. Skulls from Buru, Sulawesi and the Togian Islands were represented. The continuous growth process was summarised into five stages (‘A’–‘E’) according to the position of the tip of the tooth over the bones of the skull. The supracutaneous portion of the tooth grew in a curve-linear fashion dorso-caudally, and was orientated such that the tips grew towards the midline of the cranium. The teeth of Sulawesi and Togian babirusa grew more dorsally over the nasal and frontal bones. Measurements were made on a subset of 45 teeth from Sulawesi babirusa skulls. The subcutaneous portion of the maxillary canine tooth (n = 22) increased in size from 37.3 mm (95% CI: 29.9–44.4 mm) in growth stage ‘B’ to 54.3 mm (49.4–59.2 mm) in growth stage ‘E’ as the erupted portion of the tooth (n = 19) lengthened from 81.3 mm (43.8–118.9 mm) in growth stage ‘A’ to 215.3 mm (177.8–252.9 mm) in growth stage ‘E’. The apical end of the tooth was open and thin-walled. The lumen of the tooth was filled with a cone of well vascularised dental pulp that extended almost to the tip of the tooth. The angle of curvature of the tooth within the alveolus (n = 22) decreased from 19.8 (17.3–22.3) degrees in growth stage ‘B’ to 7.4 (5.7–9.0) degrees in growth stage ‘E’. The corresponding supracutaneous angle of curvature (n = 25) reduced from 36.8 (33.6–40.1) degrees in growth stage ‘A’ to 10.7 (8.6–12.8) degrees in growth stage ‘E’.  相似文献   

12.
13.
Titin-like kinases are muscle-specific kinases that regulate mechanical sensing in the sarcomere. Twitchin kinase (TwcK) is the best-characterized member of this family, both structurally and enzymatically. TwcK activity is auto-inhibited by a dual intrasteric mechanism, in which N- and C-terminal tail extensions wrap around the kinase domain, blocking the hinge region, the ATP binding pocket and the peptide substrate binding groove. Physiologically, kinase activation is thought to occur by a stretch-induced displacement of the inhibitory tails from the kinase domain. Here, we now show that TwcK inhibits its catalysis even in the absence of regulatory tails, by undergoing auto-phosphorylation at mechanistically important elements of the kinase fold. Using mass spectrometry, site-directed mutagenesis and catalytic assays on recombinant samples, we identify residues T212, T301, T316 and T401 as primary auto-phosphorylation sites in TwcK in vitro. Taken together, our results suggest that residue T316, located in the peptide substrate binding P + 1 loop, is the dominantly regulatory site in TwcK. Based on these findings, we conclude that TwcK is regulated through a triple-inhibitory mechanism consisting of phosphorylation and intrasteric blockage, which is responsive not only to mechanical cues but also to biochemical modulation. This implies that mechanically stretched conformations of TwcK do not necessarily correspond to catalytically active states, as previously postulated. This further suggests a phosphorylation-dependent desensitization of the TwcK-mediated mechanoresponse of the sarcomere in vivo.  相似文献   

14.
In this study, an amphibian antimicrobial peptide, aurein 2.3, was predicted to use oblique orientated α-helix formation in its mechanism of membrane destabilisation. Molecular dynamic (MD) simulations and circular dichroism (CD) experimental data suggested that aurein 2.3 exists in solution as unstructured monomers and folds to form predominantly α-helical structures in the presence of a dimyristoylphosphatidylcholine membrane. MD showed that the peptide was highly surface active, which supported monolayer data where the peptide induced surface pressure changes > 34 mN m? 1. In the presence of a lipid membrane MD simulations suggested that under hydrophobic mismatch the peptide is seen to insert via oblique orientation with a phenylalanine residue (PHE3) playing a key role in the membrane interaction. There is evidence of snorkelling leucine residues leading to further membrane disruption and supporting the high level of lysis observed using calcein release assays (76%). Simulations performed at higher peptide/lipid ratio show peptide cooperativity is key to increased efficiency leading to pore-formation.  相似文献   

15.
Known PTP1B inhibitors with bis-anionic moieties exhibit potent inhibitory activity, good selectivity, however, they are incapable of penetrating cellular membranes. Based upon our finding of a new pharmacophoric group in inhibition of PTP1B and the structural characteristics of the binding pocket of PTP1B, a series of bis-arylethenesulfonic acid ester derivatives were designed and synthesized. These novel molecules, particularly Y-shaped bis-arylethenesulfonic acid ester derivatives, exhibited high PTP1B inhibitory activity, moderate selectivity, and great potential in penetrating cellular membranes (compound 7p, CLog P = 9.73, Papp = 9.6 × 10-6 cm/s; IC50 = 140, 1290 and 920 nM on PTP1B, TCPTP and SHP2, respectively). Docking simulations suggested that these Y-shaped inhibitors might interact with multiple secondary binding sites in addition to the catalytic site of PTP1B.  相似文献   

16.
Angiotensin I-converting enzyme (ACE) inhibitory peptide from silkworm pupa (Bombyx mori) was purified, modified, as well as inhibition mechanism by using molecular docking analysis. Silkworm pupa protein was hydrolyzed by neutral protease and the obtained hydrolysate was subjected to various types of chromatography to acquire peptide isolate. Then the molecular mass and amino acid sequence of the peptide was determined by MALDI-TOF/TOF MS. Subsequently, thermal and digestive stability of the peptide were explored through a high temperature processing and a simulated gastrointestinal digestion. Finally, the peptide was modified to smaller peptides and investigated their potentiate activities. Results showed that the peptide from silkworm pupa was determined to be Gly-Asn-Pro-Trp-Met (603.7 Da) with IC50 21.70 μM. Stability testing showed that ACE inhibitory activities were not significantly changed at temperature from 40 to 80 °C as well as during in vitro gastrointestinal digestion. The inhibitory activity of four modified peptides were Trp-Trp > Gly-Asn-Pro-Trp-Trp > Asn-Pro-Trp-Trp > Pro-Trp-Trp, and the IC50 of Trp-Trp was 10.76 μM Docking simulation revealed that the inhibitory activity was closely related to the spatial structure of peptide and zinc ions. The purified peptide and four modified peptides may be beneficial as functional food or drug for treating hypertension.  相似文献   

17.
In the ciliate Euplotes raikovi, water-borne protein pheromones promote the vegetative cell growth and mating by competitively binding as autocrine and heterologous signals to putative cell receptors represented by membrane-bound pheromone isoforms. A previously determined crystal structure of pheromone Er-1 supported a pheromone/receptor binding model in which strong protein–protein interactions result from the cooperative utilization of two distinct types of contact interfaces that arrange molecules into linear chains, and these into two-dimensional layers. We have now determined the crystal structure of a new pheromone, Er-13, isolated from cultures that are strongly mating reactive with cultures source of pheromone Er-1. The comparison between the Er-1 and Er-13 crystal structures reinforces the fundamental of the cooperative model of pheromone/receptor binding, in that the molecules arrange into linear chains taking a rigorously alternate opposite orientation reflecting the presumed mutual orientation of pheromone and receptor molecules on the cell surface. In addition, the comparison provides two new lines of evidence for a univocal rationalization of observations on the different behaviour between the autocrine and heterologous pheromone/receptor complexes. (i) In the Er-13 crystal, chains do not form layers which thus appear to be an over-structure unique to the Er-1 crystal, not essential for the pheromone signalling mechanisms. (ii) In both crystal structures, the intra-chain interfaces are equally derived from burying amino-acid side-chains mostly residing on helix-3 of the three-helical pheromone fold. This helix is thus identified as the key structural motif underlying the pheromone activity, in line with its tight intra- and interspecific structural conservation.  相似文献   

18.
19.
A series of thirty-seven 1,3,5-triazine analogues have been synthesized, characterized and evaluated for their antiproliferative activity against a panel of four different human cancer cell lines such as HeLa, HepG2, A549 and MCF-7. Most of the 1,3,5-triazine analogues exhibited promising antiproliferative activity against tested cancer cell lines. Among all the synthesized compounds, 8j showed potent activity against the cancer cell lines such as HeLa, HepG2, A549 and MCF-7 with IC50 12.3 ± 0.8, 9.6 ± 0.4, 10.5 ± 1.0 and 11.7 ± 0.5 μM respectively. 8j was taken up for elaborate biological studies and the cells in the cell cycle were arrested in G2/M phase. In addition, 8j was examined for its effect on the microtubule system with a tubulin polymerization assay, immunofluorescence. 8j showed remarkable inhibition of tubulin polymerization. Molecular docking studies were also carried out to understand the binding pattern. The studies suggested that 8j has a good binding affinity of ?7.949 towards nocodazole binding site of tubulin while nocodazole has ?7.462.  相似文献   

20.
Peptide display approaches, in which peptide epitopes of known binding activities are grafted onto stable protein scaffolds, have been developed to constrain the peptide in its bioactive conformation and to enhance its stability. However, peptide grafting can be a lengthy process requiring extensive computational modeling and/or optimisation by directed evolution techniques. In this study, we show that ultra‐stable consensus‐designed tetratricopeptide repeat (CTPR) proteins are amenable to the grafting of peptides that bind the Kelch‐like ECH‐associated protein 1 (Keap1) onto the loop between adjacent repeats. We explore simple strategies to optimize the grafting process and show that modest improvements in Keap1‐binding affinity can be obtained by changing the composition of the linker sequence flanking either side of the binding peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号