首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Bonhomme  F.  Sommer  H.  Bernier  G.  Jacqmard  A. 《Plant molecular biology》1997,34(4):573-582
SaMADS D gene of Sinapis alba was isolated by screening a cDNA library from young inflorescences with a mixture of MADS-box genes of Antirrhinum majus (DEF, GLO, SQUA) as probe. Amino acid sequence comparison showed a high degree of similarity between the SaMADS D and AGL9, DEFH200, TM5, FBP2 and DEFH 72 gene products. Analysis of the SaMADS D gene expression by in situ hybridization reveals a novel expression pattern for a MADS-box gene and suggests a dual function for this gene: first, as a determinant in inflorescence meristem identity since it starts to be expressed directly beneath the inflorescence meristem at the time of initiation of the first floral meristem, is no longer expressed in the inflorescence meristem forced to revert to production of leafy appendages, and is expressed again when the reverted meristem resumes floral meristem initiation, and, second, as an interactor with genes specifying floral organ identity since it is expressed in the floral meristem from the stage of sepal protrusion.  相似文献   

3.
Multiple interactions amongst floral homeotic MADS box proteins.   总被引:23,自引:1,他引:22       下载免费PDF全文
Most known floral homeotic genes belong to the MADS box family and their products act in combination to specify floral organ identity by an unknown mechanism. We have used a yeast two-hybrid system to investigate the network of interactions between the Antirrhinum organ identity gene products. Selective heterodimerization is observed between MADS box factors. Exclusive interactions are detected between two factors, DEFICIENS (DEF) and GLOBOSA (GLO), previously known to heterodimerize and control development of petals and stamens. In contrast, a third factor, PLENA (PLE), which is required for reproductive organ development, can interact with the products of MADS box genes expressed at early, intermediate and late stages. We also demonstrate that heterodimerization of DEF and GLO requires the K box, a domain not found in non-plant MADS box factors, indicating that the plant MADS box factors may have different criteria for interaction. The association of PLENA and the temporally intermediate MADS box factors suggests that part of their function in mediating between the meristem and organ identity genes is accomplished through direct interaction. These data reveal an unexpectedly complex network of interactions between the factors controlling flower development and have implications for the determination of organ identity.  相似文献   

4.
DEFICIENS (DEF) and GLOBOSA (GLO) function in petal and stamen organ identity in Antirrhinum and are orthologs of APETALA3 and PISTILLATA in Arabidopsis. These genes are known as B-function genes for their role in the ABC genetic model of floral organ identity. Phylogenetic analyses show that DEF and GLO are closely related paralogs, having originated from a gene duplication event after the separation of the lineages leading to the extant gymnosperms and the extant angiosperms. Several additional gene duplications followed, providing multiple potential opportunities for functional divergence. In most angiosperms studied to date, genes in the DEF/GLO MADS-box subfamily are expressed in the petals and stamens during flower development. However, in some angiosperms, the expression of DEF and GLO orthologs are occasionally observed in the first and fourth whorls of flowers or in nonfloral organs, where their function is unknown. In this article we review what is known about function, phylogeny, and expression in the DEF/GLO subfamily to examine their evolution in the angiosperms. Our analyses demonstrate that although the primary role of the DEF/GLO subfamily appears to be in specifying the stamens and inner perianth, several examples of potential sub- and neofunctionalization are observed.  相似文献   

5.
The formation of flowers starts when floral meristems develop on the flanks of the inflorescence meristem. In Arabidopsis the identity of floral meristems is promoted and maintained by APETALA1 (AP1) and CAULIFLOWER (CAL). In the ap1 cal double mutant the meristems that develop on the flanks of the inflorescence meristem are unable to establish floral meristem identity and develop as inflorescence meristems on which new inflorescence meristems subsequently proliferate. We demonstrate in contrast to previous models that AGAMOUS-LIKE 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) are also floral meristem identity genes since the ap1-10 agl24-2 svp-41 triple mutant continuously produces inflorescence meristems in place of flowers. Furthermore, our results explain how AP1 switches from a floral meristem identity factor to a component that controls floral organ identity.  相似文献   

6.
APETALA1 (AP1) and its homologue SQUAMOSA (SQUA) are key regulatory genes specifying floral meristem identity in the model plants Arabidopsis and Antirrhinum. Despite many similarities in their sequence, expression and functions, only AP1 appears to have the additional role of specifying sepal and petal identity. No true AP1/SQUA-functional homologues from any other plant species have been functionally studied in detail, therefore the question of how the different functions of AP1-like genes are conserved between species has not been addressed. We have isolated and characterized PEAM4, the AP1/SQUA-functional homologue from pea, a plant with a different floral morphology and inflorescence architecture to that of Arabidopsis or Antirrhinum. PEAM4 encodes for a polypeptide 76% identical to AP1, but lacks the C-terminal prenylation motif, common to AP1 and SQUA, that has been suggested to control the activity of AP1. Nevertheless, constitutive expression of PEAM4 caused early flowering in tobacco and Arabidopsis. In Arabidopsis, PEAM4 also caused inflorescence-to-flower transformations similar to constitutive AP1 expression, and was able to rescue the floral organ defects of the strong ap1-1 mutant. Our results suggest that the control of both floral meristem and floral organ identity by AP1 is not restricted to Arabidopsis, but is extended to species with diverse floral morphologies, such as pea.  相似文献   

7.
Flowers of an alloplasmic male-sterile tobacco line, comprised of the nuclear genome of Nicotiana tabacum and the cytoplasm of Nicotiana repanda, develop short, poorly-pigmented petals and abnormal sterile stamens that often are fused with the carpel wall. The development of flower organ primordia and establishment of boundaries between the different zones in the floral meristem were investigated by performing expression analysis of the tobacco orthologs of the organ identity genes GLO, AG and DEF. These studies support the conclusion that boundary formation was impaired between the organs produced in whorls 3 and 4 resulting in partial fusions between anthers and carpels. According to the investigations cell divisions and floral meristem size in the alloplasmic line were drastically reduced in comparison with the male-fertile tobacco line. The reduction in cell divisions leads to a discrepancy between cell number and cell determination at the stage when petal and stamen primordia should be initiated. At the same stage expression of the homeotic genes was delayed in comparison with the male-fertile line. However, the abnormal organ development was not due to a failure in the spatial expression of the organ identity genes. Instead the aberrant development in the floral organs of whorls 2, 3 and 4 appears to be caused by deficient floral meristem development at an earlier stage. Furthermore, defects in cell proliferation in the floral meristem of the alloplasmic male-sterile line correlates with presence of morphologically modified mitochondria. The putative causes of reduced cell number in the floral meristem and the consequences for floral development are discussed.  相似文献   

8.
In our previous studies, we identified four DEFICIENS (DEF)-like genes and one GLOBOSA (GLO)-like gene involved in floral organ development in Phalaenopsis equestris. Revealing the DNA binding properties and protein-protein interactions of these floral homeotic MADS-box protein complexes (PeMADS) in orchids is crucial for the elucidation of the unique orchid floral morphogenesis. In this study, the interactome of B-class PeMADS proteins was assayed by the yeast two-hybrid system (Y2H) and glutathione S-transferase (GST) pull-down assays. Furthermore, the DNA binding activities of these proteins were assessed by using electrophoretic mobility shift assay (EMSA). All four DEF-like PeMADS proteins interacted individually with the GLO-like PeMADS6 in Y2H assay, yet with different strengths of interaction. Generally, the PeMADS3/PeMADS4 lineage interacted more strongly with PeMADS6 than the PeMADS2/PeMADS5 lineage did. In addition, independent homodimer formation for both PeMADS4 (DEF-like) and PeMADS6 (GLO-like) was detected. The protein-protein interactions between pairs of PeMADS proteins were further confirmed by using a GST pull-down assay. Furthermore, both the PeMADS4 homodimer and the PeMADS6 homodimer/homomultimer per se were able to bind to the MADS-box protein-binding motif CArG. The heterodimeric complexes PeMADS2-PeMADS6, PeMADS4-PeMADS6 and PeMADS5-PeMADS6 showed CArG binding activity. Taken together, these results suggest that various complexes formed among different combinations of the five B-class PeMADS proteins may increase the complexity of their regulatory functions and thus specify the molecular basis of whorl morphogenesis and combinatorial interactions of floral organ identity genes in orchids.  相似文献   

9.
Meristems may be determinate or indeterminate. In maize, the indeterminate inflorescence meristem produces three types of determinate meristems: spikelet pair, spikelet and floral meristems. These meristems are defined by their position and their products. We have discovered a gene in maize, indeterminate floral apex1 (ifa1) that regulates meristem determinacy. The defect found in ifa1 mutants is specific to meristems and does not affect lateral organs. In ifa1 mutants, the determinate meristems become less determinate. The spikelet pair meristem initiates more than a pair of spikelets and the spikelet meristem initiates more than the normal two flowers. The floral meristem initiates all organs correctly, but the ovule primordium, the terminal product of the floral meristem, enlarges and proliferates, expressing both meristem and ovule marker genes. A role for ifa1 in meristem identity in addition to meristem determinacy was revealed by double mutant analysis. In zea agamous1 (zag1) ifa1 double mutants, the female floral meristem converts to a branch meristem whereas the male floral meristem converts to a spikelet meristem. In indeterminate spikelet1 (ids1) ifa1 double mutants, female spikelet meristems convert to branch meristems and male spikelet meristems convert to spikelet pair meristems. The double mutant phenotypes suggest that the specification of meristems in the maize inflorescence involves distinct steps in an integrated process.  相似文献   

10.
Separation of shoot and floral identity in Arabidopsis   总被引:13,自引:0,他引:13  
  相似文献   

11.
Floral organ identity is largely controlled by the spatially restricted expression of several MADS-box genes. In Antirrhinum majus these organ identity genes include DEF, GLO and PLE . Single and double mutant analyses indicated that the type of organ found in a particular whorl is dependent on which combination of these genes is expressed there. This paper reports the ectopic expression of Antirrhinum organ identity genes, alone and in combinations, in transgenic tobacco. Although the phenotypes are broadly in agreement with the genetic predictions, several unexpected features are observed which provide information concerning the action of the organ identity genes. The presumed tobacco homologue of DEF, NTDEF , has been isolated and used to investigate the influence of ectopic expression of the Antirrhinum organ identity genes on the endogenous tobacco genes. Analysis of the spatial and temporal expression patterns of NTDEF and NTGLO reveals that the boundaries are not coincident and that differences exist in the regulatory mechanisms of the two genes concerning both induction and maintenance of gene expression. Evidence is provided which indicates that organ development is sensitive to the relative levels of organ identity gene expression. Expression of the organ identity genes outside the flower or inflorescence produced no effects, suggesting that additional factors are required to mediate their activity. These results demonstrate that heterologous genes can be used to predictably influence floral organ identity but also reveal the existence of unsuspected control mechanisms.  相似文献   

12.
I Amaya  O J Ratcliffe    D J Bradley 《The Plant cell》1999,11(8):1405-1418
Plant species exhibit two primary forms of flowering architecture, namely, indeterminate and determinate. Antirrhinum is an indeterminate species in which shoots grow indefinitely and only generate flowers from their periphery. Tobacco is a determinate species in which shoot meristems terminate by converting to a flower. We show that tobacco is responsive to the CENTRORADIALIS (CEN) gene, which is required for indeterminate growth of the shoot meristem in Antirrhinum. Tobacco plants overexpressing CEN have an extended vegetative phase, delaying the switch to flowering. Therefore, CEN defines a conserved system controlling shoot meristem identity and plant architecture in diverse species. To understand the underlying basis for differences between determinate and indeterminate architectures, we isolated CEN-like genes from tobacco (CET genes). In tobacco, the CET genes most similar to CEN are not expressed in the main shoot meristem; their expression is restricted to vegetative axillary meristems. As vegetative meristems develop into flowering shoots, CET genes are downregulated as floral meristem identity genes are upregulated. Our results suggest a general model for tobacco, Antirrhinum, and Arabidopsis, whereby the complementary expression patterns of CEN-like genes and floral meristem identity genes underlie different plant architectures.  相似文献   

13.
In Arabidopsis, floral meristems arise in continuous succession directly on the flanks of the inflorescence meristem. Thus, the pathways that regulate inflorescence and floral meristem identity must operate both simultaneously and in close spatial proximity. The TERMINAL FLOWER 1 (TFL1) gene of Arabidopsis is required for normal inflorescence meristem function, and the LEAFY (LFY), APETALA 1 (AP1), and APETALA 2 (AP2) genes are required for normal floral meristem function. We present evidence that inflorescence meristem identity is promoted by TFL1 and that floral meristem identity is promoted by parallel developmental pathways, one defined by LFY and the other defined by AP1/AP2. Our analysis suggests that the acquisition of meristem identity during inflorescence development is mediated by antagonistic interactions between TFL1 and LFY and between TFL1 and AP1/AP2. Based on this study, we propose a simple model for the genetic regulation of inflorescence development in Arabidopsis. This model is discussed in relation to the proposed interactions between the inflorescence and the floral meristem identity genes and in regard to other genes that are likely to be part of the genetic hierarchy regulating the establishment and maintenance of inflorescence and floral meristems.  相似文献   

14.
In Arabidopsis floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)-FD complex and the flower meristem identity gene LEAFY. The floral specification activity of FT is dependent upon two related BELL1-like homeobox (BLH) genes PENNYWISE (PNY) and POUND-FOOLISH (PNF) which are required for floral evocation. PNY and PNF interact with a subset of KNOTTED1-LIKE homeobox proteins including SHOOT MERISTEMLESS (STM). Genetic analyses show that these BLH proteins function with STM to specify flowers and internodes during inflorescence development. In this study, experimental evidence demonstrates that the specification of flower and coflorescence meristems requires the combined activities of FT-FD and STM. FT and FD also regulate meristem maintenance during inflorescence development. In plants with reduced STM function, ectopic FT and FD promote the formation of axillary meristems during inflorescence development. Lastly, gene expression studies indicate that STM functions with FT-FD and AGAMOUS-LIKE 24 (AGL24)-SUPPRESSOR OF OVEREXPRESSION OF CONTANS1 (SOC1) complexes to up-regulate flower meristem identity genes during inflorescence development.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号