首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
RNA病毒一般传播迅速,给人类和自然造成巨大危害和威胁.许多RNA病毒的结构蛋白在基础研究和应用方面已日趋完善.相比之下,就非结构蛋白(NS)所做的研究较少,存在许多未知问题.在这些非结构蛋白中,病毒自身编码的RNA依赖的RNA聚合酶(RNA-dependent RNA polymerase,RdRP)对病毒的复制起关键作用.对RdRP的研究不仅使对病毒RNA复制的机制更精细明了,且有可能提供新的抗病毒靶标和诊断试剂.本文对RdRP特别是动物RNA病毒RdRP的结果与功能作一综述.  相似文献   

2.
A型流感病毒是正粘病毒科成员,为单股负链分节段RNA病毒,全基因组由八个节段组成,分别编码八种结构蛋白(PB2、PB1、PA、HA、NP、NA、M1和M2)和两种非结构蛋白(NS1和NS2).核蛋白(NP)和RNA聚合酶复合体与病毒的八个RNA节段组成八个螺旋丝状的病毒核衣壳(RNP),核衣壳被双层类脂膜包裹,脂膜内为基质蛋白(M1)层,膜上镶嵌着HA、NA和M2三种膜蛋白.HA和NA为流感病毒的主要抗原.根据HA和NA抗原性的差异,A型流感病毒可分16个HA亚型和9个NA亚型[1].A型流感病毒具有广泛的宿主范围和超强的重组变异能力,对人类健康的威胁日趋严重,引起各国政府和科技工作者的广泛关注.研究RNA聚合酶的功能、揭示病毒复制和变异机理是目前抗流感病毒感染研究的热点之一.本文综述了流感病毒RNA聚合酶及其对病毒基因组复制和转录调控的研究进展.  相似文献   

3.
A型流感病毒是正粘病毒科成员,为单股负链分节段RNA病毒,全基因组由八个节段组成,分别编码八种结构蛋白(PB2、PB1、PA、HA、NP、NA、M1和M2)和两种非结构蛋白(NS1和NS2)。核蛋白(NP)和RNA聚合酶复合体与病毒的八个RNA节段组成八个螺旋丝状的病毒核衣壳(RNP),核衣壳被双层类脂膜包裹,脂膜内为基质蛋白(M1)层,膜上镶嵌着HA、NA和M2三种膜蛋白。HA和NA为流感病毒的主要抗原。根据HA和NA抗原性的差异,A型流感病毒可分16个HA亚型和9个NA亚型[1]。A型流感病毒具有广泛的宿主范围和超强的重组变异能力,对人类健康的威胁日趋…  相似文献   

4.
RNA病毒基因组和转录复制多样性的分子基础   总被引:1,自引:0,他引:1  
自然界中RNA病毒的种类和数量比DNA病毒多得多,根据基因组类型,RNA病毒可分为多种类型,许多研究者认为,存在于古细菌Myxobacteria中,仅仅有一个逆转录酶基因的反转子(Retron)可能是所有病毒的祖先,进化的模式如下,反转子→反座子→反转录转座子→反转录病毒→副反转录病毒→DNA病毒,RNA病毒转录。/复制在很多特征上与DNA病毒迥然不同,依赖于RNA的RNA聚合酶是RNA病转录/复制的主要催化剂,RNA病毒基因组转录和复制都从3'端poly(A)或类tRNA结构或其他结构起始,内部终止是转录,通读到5'末端终止是复制,RNA病毒的模板有正链病毒(RNA模板,负链病毒RNA模板和全长正负链反基因组RNA模板,RNA模板的选择调控机制非常复杂,目前知之甚少,选择模板,RNA聚合酶与转录因子结合形成复制体是两种主要的调控方法,另外,5'UTR和3'UTR也可以调控RNA病毒的转录。  相似文献   

5.
猪繁殖与呼吸综合征病毒PRRSV亚基因组的转录和基因组的复制由病毒复制酶引导.病毒首先合成两个多聚蛋白,随后多聚蛋白被加工分解成若干较小的非结构蛋白(nsps),从而产生了复制酶.病毒复制酶所在的nsp9含有特异性的功能性序列模体,在正链RNA病毒的RNA依赖性RNA聚合酶RdRp中共同含有这些保守的序列模体.为了验证PRRSV所特有的SDD模体是否能够替换为其他RNA病毒相应所含有的保守模体,以及SDD的每一个氨基酸对于RdRp催化活性的影响,将其分别替换为多种不同的氨基酸.研究发现,只有将nsp9中SDD替换为GDD,即丝氨酸替换为甘氨酸S3050G时,才能拯救出病毒,并且传代后此病毒在遗传上是稳定的.改变SDD中的任何一个天门冬氨酸都对病毒是致死性的,突变后破坏了聚合酶的活性和RdRp的翻译功能,但却没有使RdRp失去复制功能.所以研究认为,SDD模体是PRRSV的RdRp所特有和保守的,不能被替换为除GDD外的其他RNA病毒所含有的保守模体,套式病毒与其他正链RNA病毒在进化上具有一定的联系.研究表明,SDD模体的两个天门冬氨酸对于PRRSV亚基因组的转录是不可缺少的;从进化上看,SDD模体可能是正链RNA病毒GDD模体的一种变异形式.  相似文献   

6.
Bai H  Yan H  Hou Z 《生理科学进展》2011,42(1):47-51
细菌的转录过程是一个由多种分子共同调控的复杂过程,其中RNA聚合酶(RNA polymerase,RNAP)是催化转录合成RNA的重要酶.作为RNAP中一个独立的亚单位,σ因子(sigma factor)在转录起始过程中起着至关重要的作用.最近的研究表明σ因子参与了转录起始的各个过程,包括启动子的定位、启动子的解链、起始RNA合成、脱离启动子等过程.由于其在细菌转录过程中的重要作用,σ因子正在成为抗菌药物研究的新靶点.本文对σ因子的结构、分类、功能以及以它为中心的调控网络的研究进行综述.  相似文献   

7.
曹雪松   《微生物学通报》2000,27(1):60-63
真核生物基因转录活性的调控过程十分复杂,许多蛋白质在这一过程中发挥作用。酵母中对RNA聚合酶Ⅱ转录活性的调控可分为以下4种类型:(1)阻遏物的直接抑制作用;(2)阻遏物的间接抑制作用;(3)激活物的直接活化作用;(4)激活物的亚细胞定位调节作用。本文拟就近来酵母中RNA聚合酶Ⅱ转录活性的上述4种调控机制的研究进展作一综述。1 阻遏蛋白的直接抑制作用1.1半乳糖代谢作用的调控 目前对于酿酒酵母(Saccharomyces cerevisiae)利用半乳糖(包括摄取、转运、代谢等)的过程以及相关酶基…  相似文献   

8.
丙型肝炎病毒依赖于RNA的RNA聚合酶(RdRp)研究进展   总被引:2,自引:0,他引:2  
由于缺乏合适的HCV感染细胞模型,严重制约了HCV复制,特别是HCV复制的关键因子依赖于RNA的RNA聚合酶(RdRp)的研究.对HCV序列比较分析并通过异源表达证明NS5B是HCV复制的RdRp.NS5B C端疏水性氨基酸区域以及NS5B与细胞膜形成复合体等影响NS5B溶解性.在合适的反应条件下NS5B可以多种RNA分子为模板催化RNA复制,特别是能有效复制HCV全长(+)RNA.高浓度GTP激活HCV RdRp活性.NS5B N/C端缺失突变和保守性A、B、C区中的点突变影响RdRp活性,但D区345位精氨酸突变为赖氨酸时RdRp活性明显升高.HCV RdRp的发现及其功能研究为HCV药物研究提供了新型靶标.  相似文献   

9.
将含脊髓灰质炎病毒(PV)RNA聚合酶的不同长度基因片段克隆到载体pSG5质粒上,分别构建了4个表达RNA聚合酶的质粒.体外转录实验证明,pSG5-POL1.99和pSG5-POL2.03质粒转染细胞的提取物促进了特异的RNA转录,表明两质粒可表达RNA聚合酶.将PV的5'NCR序列插在载体pGREEN LANTERN-1的CMV启动子下游,构建了pGREEN LANTERN-1-5'NCR质粒;用LacZ基因替换GFP基因分别插入到PGREEN LANTERN-1和pGREEN LANTERN-1-5'NCR质粒上,构建成 pLacZ LANTERN-1和pLacZ LANTERN-1-5'NCR质粒.表达RNA聚合酶的质粒与pLacZ 5'NCR调控表达报告基因的质粒共转染,明显提高了报告基因的表达水平,表明PV的表达调控元件和RNA聚合酶基因可用于构建外源基因高效表达载体.  相似文献   

10.
西尼罗病毒(West Nile virus, WNV)非结构蛋白NS5是病毒基因组复制的关键蛋白.以病毒全长cDNA克隆为模板,PCR扩增获得NS5的RNA依赖的RNA聚合酶(RdRp)活性区(NS5pol)及该蛋白完整的编码序列(NS5F),分别克隆于原核表达载体pET-28a 并转化至大肠杆菌E.coliBL21(DE3)中诱导表达.表达的可溶性重组蛋白经Ni柱亲和层析纯化后进行SDS-PAGE和Western印迹鉴定.结果显示,二者均为病毒特异蛋白,且纯度均在90%以上.进一步的体外RdRp分析及EMSA的结果表明,NS5pol和NSF5均有较高的RdRp活性,且该活性具有RNA模板序列和二级结构的特异性.获得的具有RdRp活性的NS5pol和NS5F为西尼罗病毒基因组复制相关元件的研究奠定了基础.  相似文献   

11.
草鱼呼肠孤病毒RNA聚合酶基因的表达与产物纯化   总被引:1,自引:0,他引:1  
草鱼呼肠孤病毒是引起草鱼出血病的主要病原,隶属于呼肠孤病毒科水生呼肠孤病毒属.序列分析表明,GCRV S2 片段长为3 877核苷酸,编码一个分子量为138kDa 的蛋白VP2,具有RNA聚合酶性质.为进一步了解该病毒 RNA聚合酶特性,本研究在对GCRV RNA聚合酶基因(GCRV-RdRp)保守区(约1.5kb)重组质粒pR/RRp高效表达的基础上,分别构建了编码GCRV RNA聚合酶保守区N端与C端部分基因的 pR/RRpN及pR/RRpC重组表达载体,并在原核细胞中获得成功表达.筛选的重组表达菌株经IPTG诱导培养,得到分子量分别为98kDa、103kDa的目的表达融合蛋白.Western blot分析表明,该表达产物与兔抗GCRV-VP2血清呈阳性反应.通过ProBond柱亲和层析,纯化了融合有6个组氨酸的重组表达产物,并获得约90%纯的目的蛋白.上述结果为GCRV RNA聚合酶特性分析提供了依据.  相似文献   

12.
RNA干扰是指dsRNA抑制细胞内同源基因表达的现象,RNA干扰现象自发现以来在短短的几年里,已成功地用于不同种属的生物研究。dsRNA不仅参与内源基因表达调控,而且能够抑制宿主内病原微生物基因的表达,参与构筑生物体的防御机制。近年来,运用RNAi技术在哺乳动物中的研究不断深入,尤其是抑制病毒复制的研究成果令人欣喜,这为人类动物抗病毒治疗提供了新的思路。  相似文献   

13.
14.
15.
当RNA聚合酶Ⅱ(RNAPⅡ)离开启动子开始转录延伸时,会遇到包括紧密包装形成染色质的核小体在内的多种障碍,细胞内存在多种因子可协助RNAPⅡ克服这些障碍,保证转录的顺利进行。遗传和生化研究已经分离和鉴定了一些在此过程中起作用的延伸因子(elongation factor),现依据作用方式和效果对目前发现的主要延伸因子的研究进展进行了分类综述。  相似文献   

16.
大肠杆菌是生物工程研究中最重要的外源基因表达系统,许多真核生物及病毒基因表达的早期研究都是在大肠杆菌中进行的,在外源基因表达的全过程中,依赖于DNA的RNA聚合酶在基因的转录中担负了重要的角色,随着**A聚合酶各亚单位结构和功能研究的深入,人们对于RNA聚合酶的研究取得了今人瞩目的进展,本文就RNA聚合酶的分子水平研究进展作~介绍。IRNA聚合酶全酶(H010-enzyme)原核生物的依赖}yDNA的RNA的聚合酶(以下简称ANA…一般由几种不同的亚单位组成。大肠杆菌RNAP至少含有四种不同的亚单位a、p、日’和a,一般以两…  相似文献   

17.
本文对双链RNA(dsRNA)病毒复制机制的研究进展进行了综述。根据dsRNA病毒复制周期,分以下几方面对其复制的有关分子进行分析:转录、转录本释放和“满头”复制模型、(+)RNA转译、病毒包装、(-)RNA合成等。此外,还简要分析了宿主基因及其产物在病毒复制中的作用。  相似文献   

18.
草鱼呼肠孤病毒RNA聚合酶基因功能区在原核细胞中的表达   总被引:6,自引:0,他引:6  
方勤  朱作言 《病毒学报》2002,18(1):86-88
草鱼呼肠孤病毒(grass carp reovirus)为我国分离、鉴定的第一株水生动物病毒.1983年,我国首次报道引起爆发性草鱼出血病的病原为草鱼出血病病毒[1,2],其后相继进行了系统的病毒形态学、生物学、生物化学及分子生物学特性等研究[3-8].自1979年Meyers T R等报道从水生动物中分离出第一株呼肠孤样病毒,迄今国际上已分离鉴定40余种水生呼肠孤病毒(aquareovirus).在这些分离株中,大多数毒株不能引起寄主的病理反应或仅表现出较弱的致病性.然而研究认为,GCRV为水生呼肠孤病毒中致病力最强的毒株[9].可见,以GCRV为模型,研究水生呼肠孤病毒的复制与致病机理具有一定的理论及实际意义.我们在对GCRV反应核心及体外转录研究中,已证实GCRV RNA聚合酶在病毒粒子中的存在及其位置[5];GCRV序列测定及定位结果显示,GCRV-VP2多肽为该病毒RNA聚合酶(RNA dependent RNA polymerase RdRp)[6,7].为了探讨草鱼呼肠孤病毒的侵染与宿主的相关性及复制机制,我们首次进行了该病毒RNA聚合酶基因(GCRV-RdRp)功能区序列在原核细胞中的表达研究,并得到高效表达融合蛋白.这一结果将为该酶的活性及特性分析提供实验依据.下面报道本研究结果.  相似文献   

19.
RNA聚合酶σ~S亚基的研究进展   总被引:1,自引:0,他引:1  
σ~S(RpoS)是大肠杆菌RNA聚合酶的一个亚基.在压力情况下,如高温、酸、渗透冲击、营养缺陷和生长进入稳定期等能够被诱导,并在一定程度上能够取代σ~(70)与核心酶结合形成全酶,从而激活多数σ~S-依赖的基因的转录.对RpoS调控的基因和它们的启动子序列、调控方式以及它自身的调控进行了简单的综述.  相似文献   

20.
RNA干扰(RNA interference,RNAi)是一种非常高效的基因沉默效应,RNA依赖性RNA聚合酶(RNA—de—pendent RNA polymerase,RdRP)介导的扩增作用可能是RNAi具有高效性的一个主要原因。了解RdRP在生物体中存在的证据、RdRP及其复合体的结构、次级siRNA的产生及转移性RNAi的发生机制等问题,对深入理解RNAi的作用机制和促进RNAi的临床应用有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号