首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Two methods were employed for measuring coccolith formation and photosynthesis in coccolithophorids. The first method was based on measurements of 14C radioactivity of cells on membrane filters before and after acid treatment. The second method involved a conversion of 14C in coccoliths or whole cells to BaCO3 prior to counting. It was observed that in determinations of photosynthetic (or total) 14C by the first method, the count rate produced by a given amount of the isotope was 30–40% lower in the non-motile and motile forms of Coccolithus pelagicus than in C. huxleyi. There was no similarly great discrepancy in determinations of coccolith 14C.Light-dependent coccolith formation was demonstrated in both forms of C. pelagicus. The non-motile form may deposit several times more carbon in its coccoliths than it assimilates photosynthetically. In the motile form, coccolith carbon amounts to less than 2% of photosynthetic carbon.  相似文献   

2.
A Multivariate Morphon Analysis (MMA) of Coccolithus pelagicus (s. l.) coccoliths was performed on 178 samples from an oceanic core recovered off the Portuguese margin (MD95-2040), in order to define the morphometric boundaries of its morphotypes and their behaviour during the last two glacial cycles. The recurrent occurrence of the smaller morphotype of this taxon, C. pelagicus subsp. pelagicus, was recognized for the first time off the Portuguese coast. Three sections, around Heinrich Layers 1 and 6 and Termination II-Eemian, were selected to establish high resolution comparisons between C. pelagicus subsp. pelagicus and C. pelagicus subsp. braarudii and two independent proxies for cold water masses: the records of the planktonic foraminifera Neogloboquadrina pachyderma (sinistral) and ice-rafted detritus (IRD). There is an overall negative correlation between C. pelagicus subsp. pelagicus and C. pelagicus subsp. braarudii as expressed by MMA Factor 1, the scores of which respond similarly to those of two non-cocolithophore proxies and consequently, is proposed as a calcareous nannoplankton proxy for the influence of subpolar waters in the region. Detailed analysis, however, showed occasional decoupling amongst these three proxies, which are used to highlight significant changes between the cooling–warming sequences of distinct events off Iberia.  相似文献   

3.
The elemental composition of marine microorganisms (their C:N:P ratio, or stoichiometry) is central to understanding the biotic and biogeochemical processes underlying key marine ecosystem functions. Phytoplankton C:N:P is species specific and flexible to changing environmental conditions. However, bulk or fixed phytoplankton stoichiometry is usually assumed in biogeochemical and ecological models because more realistic, environmentally responsive C:N:P ratios have yet to be defined for key functional groups. Here, a comprehensive meta-analysis of experimental laboratory data reveals the variable C:N:P stoichiometry of Emiliania huxleyi, a globally significant calcifying phytoplankton species. Mean C:N:P of E. huxleyi is 124C:16N:1P under control conditions (i.e. growth not limited by one or more environmental stressors) and shows a range of responses to changes in nutrient and light availability, temperature and pCO2. Macronutrient limitation caused strong shifts in stoichiometry, increasing N:P and C:P under P deficiency (by 305% and 493% respectively) and doubling C:N under N deficiency. Responses to light, temperature and pCO2 were mixed but typically shifted cellular elemental content and C:N:P stoichiometry by ca. 30% or less. Besides these independent effects, the interactive effects of multiple environmental changes on E. huxleyi stoichiometry under future ocean conditions could be additive, synergistic or antagonistic. To synthesise our meta-analysis results, we explored how the cellular elemental content and C:N:P stoichiometry of E. huxleyi may respond to two hypothetical future ocean scenarios (increased temperature, irradiance and pCO2 combined with either N deficiency or P deficiency) if an additive effect is assumed. Both future scenarios indicate decreased calcification (which is predominantly sensitive to elevated pCO2), increased C:N, and up to fourfold shifts in C:P and N:P. Our results strongly suggest that climate change will significantly alter the role of E. huxleyi (and potentially other calcifying phytoplankton species) in marine biogeochemical processes.  相似文献   

4.
Exofacial ferricyanide reduction at the plasma membrane of intact cells, and the link between plasma membrane redox activity, inorganic carbon status of the cells and extracellular carbonic anhydrase (CAext) activity were assayed using 10 marine phytoplankton species. In species Chaetocceros compressus, Cocolithus pelagicus and Gephyrocapsa ocetanica with no extracellular CA activity under carbon-limited or carbon-replete conditions, barely detectable ferricyanide reduction was observed. Species Skeletonema costatum, Melosira sp., Thalassiosira rotula, Thalassiosira weisflogi and Pleurochrysis carterae in which extracellular CA activity was only detected under carbon-limited conditions showed high rates of exofacial ferricyanide reduction. Western blotting and immunolocalization showed the presence of enzyme protein under carbon-limited and replete conditions at the cell surface, even though the CA activity could only detected when inorganic carbon was limiting, which suggests that the development of extracellular CA in response to carbon limitation is an activation of a preexisting protein rather than de novo synthesis. The results suggest that inorganic carbon limitation in the light increases plasma membrane redox activity and promotes proton extrusion, which result in the protonation and activation of the extracellular CA.  相似文献   

5.
Whole-cell membrane currents were measured in isolated cat ventricular myocytes using a suction-electrode voltage-clamp technique. An inward-rectifying current was identified that exhibited a time-dependent activation. The peak current appeared to have a linear voltage dependence at membrane potentials negative to the reversal potential. Inward current was sensitive to K channel blockers. In addition, varying the extracellular K+ concentration caused changes in the reversal potential and slope conductance expected for a K+ current. The voltage dependence of the chord conductance exhibited a sigmoidal relationship, increasing at more negative membrane potentials. Increasing the extracellular K+ concentration increased the maximal level of conductance and caused a shift in the relationship that was directly proportional to the change in reversal potential. Activation of the current followed a monoexponential time course, and the time constant of activation exhibited a monoexponential dependence on membrane potential. Increasing the extracellular K+ concentration caused a shift of this relationship that was directly proportional to the change in reversal potential. Inactivation of inward current became evident at more negative potentials, resulting in a negative slope region of the steady state current-voltage relationship between -140 and -180 mV. Steady state inactivation exhibited a sigmoidal voltage dependence, and recovery from inactivation followed a monoexponential time course. Removing extracellular Na+ caused a decrease in the slope of the steady state current-voltage relationship at potentials negative to -140 mV, as well as a decrease of the conductance of inward current. It was concluded that this current was IK1, the inward-rectifying K+ current found in multicellular cardiac preparations. The K+ and voltage sensitivity of IK1 activation resembled that found for the inward-rectifying K+ currents in frog skeletal muscle and various egg cell preparations. Inactivation of IK1 in isolated ventricular myocytes was viewed as being the result of two processes: the first involves a voltage-dependent change in conductance; the second involves depletion of K+ from extracellular spaces. The voltage-dependent component of inactivation was associated with the presence of extracellular Na+.  相似文献   

6.
7.
ATP-dependent Cl- uptake by plasma membrane vesicles from the rat brain   总被引:1,自引:0,他引:1  
Uptake of Cl- by plasma membrane vesicles from the rat brain was stimulated by ATP at 37 degrees C, but not by beta, gamma-methylene ATP or at 0 degrees C. The addition of Triton X-100 or sucrose to the incubation medium diminished the ATP-stimulated Cl- uptake, suggesting that Cl- was transported across the membranes into the intravesicular space. This ATP-stimulated Cl- uptake was not affected by 1 mM ouabain. 1 microM oligomycin, 0.1 mM gamma-aminobutyric acid or 0.1 mM picrotoxin. Thus, non-mitochondrial ATP-driven Cl- transport through a system other than Na, K-ATPase or Cl- channels occurs in neuronal plasma membrane vesicles.  相似文献   

8.
ATP-dependent Cl- uptake by membrane vesicles from the rat brain plasma membrane fractions was not affected by the addition of 40 mM of K+, Na+ or HCO3- to the assay medium. Na+ and K+ did not alter the uptake even in the presence of a K+ ionophore, valinomycin (10 microM), or a H+/K+ exchanger, nigericin (10 microM), whereas in the presence of both of these ionophores, K+, but not Na+, reduced the Cl- uptake. Inhibitors of proton pump activity, N,N'-dicyclohexylcarbodiimide (1 mM) and 5-(N,N-hexamethylene)amiloride (40 microM), however, did not affect the Cl- uptake. These findings suggest the presence of a primary Cl- transport system probably associated with passive H+ flux in the brain plasma membranes.  相似文献   

9.
We report a pronounced diel rhythm in ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene expression in a natural population of the coccolithophorid Coccolithus pelagicus sampled during a Lagrangian experiment in the Northeast Atlantic. Our observations show that there is greater heterogeneity in the temporal regulation of RubisCO expression among planktonic chromophytes than has been reported hitherto.  相似文献   

10.
We report a pronounced diel rhythm in ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene expression in a natural population of the coccolithophorid Coccolithus pelagicus sampled during a Lagrangian experiment in the Northeast Atlantic. Our observations show that there is greater heterogeneity in the temporal regulation of RubisCO expression among planktonic chromophytes than has been reported hitherto.  相似文献   

11.
The plasma membrane potential of isolated rat hepatocytes was clamped at different values between 0 and -68 mV by addition of valinomycin in the presence of different extracellular concentrations of K+, and measured by the distribution of 86Rb+ between cells and medium. 36Cl- distribution came to steady state in 10-15 min. This steady-state distribution was compared to the plasma membrane potential over a range of values. 36Cl- distribution provided an accurate measurement of plasma membrane potential between -4 and -40 mV. At higher potentials intracellular chloride concentration is less than 20% of the extracellular concentration and errors due to uncertainties in the measurement of intracellular volume and of the contamination of cell pellets by extracellular medium precluded accurate determination of membrane potential: thus in our experiments 36Cl- underestimated the plasma membrane potential at -68 mV by 8 mV.  相似文献   

12.
Gradually altered synthetic entities were employed as molecular probes, and arachidonic acid, ADP, human alpha-thrombin and the Ca2+ ionophore A23187 as aggregation-inducing agents, in a comprehensive study on the response profile of human blood platelets with an emphasis on the effects of exogenous and increased intracellular Ca2+. Corroborating further previous conclusions, some representative carbamoylpiperidine derivatives, at concentrations effecting substantial inhibition of ADP-induced aggregation, failed to retain that effect when 5.0 mM Ca2+ was introduced into the otherwise identical test medium; reference compounds chlorpromazine and propranolol registered corresponding inhibitory patterns. At increased concentrations the compounds' inhibitory potency was regenerated even in the presence of 5 mM Ca2+. In fact, in sufficiently high concentrations, the compounds were even capable of inhibiting aggregation elicited by 15 microM of the ionophore A23187; so did chlorpromazine and propranolol. Another set of congeners revealed the striking sensitivity of ionophore A23187-induced human blood platelet aggregation to the surface active potencies of inhibitor molecules. The loss in inhibitory potency was directly related to the lesser hydrophobic character of the molecule.  相似文献   

13.
14.
Bestrophins are a newly discovered family of Cl(-) channels, some members of which are activated by intracellular Ca(2+). So far, all studies were carried out with whole-cell recordings from plasmid-transfected cultured cells, so it is unclear whether Ca(2+) activates bestrophin through a metabolic mechanism or in a more direct way. We report here experiments that addressed this question with excised, inside-out membrane patches. We chose human bestrophin-4 (hBest4) for heterologous expression because it gave particularly large Cl(-) currents when expressed, thus allowing detection even in excised membrane patches. hBest4 gave a negligible Cl(-) current in a Ca(2+)-free solution on the cytoplasmic (bath) side, but produced a Cl(-) current that was activated by Ca(2+) in a dose-dependent manner, with a K(1/2) of 230 nM. Thus, Ca(2+) appears to activate the bestrophin Cl(-) channel without going through a freely diffusible messenger or through protein phosphorylation. Because the activation and deactivation kinetics were very slow, however, we cannot exclude the involvement of a membrane-associated messenger.  相似文献   

15.
Linear perturbation theory is used to examine the stability of steady-state distributions of marine phytoplankton in the presence of a mean current with shear. Solutions are obtained for the general initial-value problem and it is found that all distributions are asymptotically stable so long as the rate of shear is greater than the local production. On the other hand, the early time behavior indicates that the system can be altered, if accomplished soon enough, depending upon a relative combination of diffusion, advection and production. Quantitative assessments are made where data are available.  相似文献   

16.
Expression of GEF1 in Xenopus laevis oocytes and HEK-293 cells gave rise to a Cl- channel that remained permanently open and was blocked by nitro-2-(3-phenyl-propylamino) benzoic acid and niflumic acid. NPPB induced petite-like colonies, resembling the GEF1 knock-out. The fluorescent halide indicator SPQ was quenched in a wild-type strain, in contrast to both a GEF1 knock-out strain and yeast grown in the presence of NPPB. Immunogold and electron microscopy located Gef1p in the plasma membrane, vacuole, endoplasmic reticulum and Golgi apparatus. Eleven substitutions in five residues forming the ion channel of GEF1 were introduced; some of them (S186A, I188N, Y459D, Y459F, Y459V, I467A, I467N and F468N) did not rescue the pet phenotype, whereas F468A, A558F and A558Y formed normal colonies. All the pet mutants showed reduced O2 consumption, small mitochondria and mostly disrupted organelles. Finally, electron microscopy revealed that the plasma membrane of the mutants develop multiple foldings and highly ordered cylindrical protein-membrane complexes. All the experiments above suggest that Gef1p transports Cl- through the plasma membrane and reveal the importance of critical amino acids for the proper function of the protein as suggested by structural models. However, the mechanism of activation of the channel has yet to be defined.  相似文献   

17.
During exponential growth in batch culture, assimilation numbersof eleven algal species ranged from 1.6–20.8, with a meanvalue of 5.3 g C/g Chlorophyll a/hr. The highest assimilationnumber of 20.8 g C/g Chlorophyll a/hr was observed in Coccolithuspelagicus, due to the relatively low concentration of chlorophylla/cell. The assimilation number declined from exponential tostationary phase in batch cultures for ten algal species, butincreased with age in batch culture in Amphiprora paludasa (abenthic diatom). The assimilation number declined with decreasinggrowth rate in nitrate-limited chemostat cultures of Phaeodactylumtricornutum and in iron-limited chemostat cultures of Phaeodactylumtricornutum and Isochrysis galbana.  相似文献   

18.
An adaptation of the ethidium bromide technique for the analysisof nucleic acids is presented for marine phytoplankton. Themethod involves an initial homogenization of cells in phosphatebuffered saline, followed by incubation of subsamples of thecell homogenate in the presence and absence of ribonudease.Quantities of DNA and DNA + RNA in the respective sub-samplesare then determined by reaction with ethidium bromide. An evaluationis made of appropriate levels of bentonite required in the assayto inhibit endogenous cellular ribonucleases. Two nucleoproteindissociating agents, pronase and heparin, are also investigatedfor their capacities to enhance nucleic add fluorescence yield.The final recommended method resulted in maximum measured levelsof RNA and DNA in phytoplankton samples tested. The method canbe rapidly performed, involves a minimum amount of sample manipulation,and yields numbers having a high degree of precision. 1Current address: School of Fisheries, University of Washington,WH-l0, Seattle, WA 98195, USA. 2Current address: Bigelow Laboratory for Ocean Sciences, WestBoothbay Harbor, ME 04575, USA.  相似文献   

19.
Plasma membrane (PM) H(+)-ATPase and H(+) transport activity were detected in PM fractions prepared from Zostera marina (a seagrass), Vallisneria gigantea (a freshwater grass) and Oryza sativa (rice, a terrestrial plant). The properties of Z. marina PM H(+)-ATPase, specifically, the optimal pH for ATPase activity and the result of trypsin treatment, were similar to those of authentic PM H(+)-ATPases in higher plants. In V. gigantea and O. sativa PM fractions, vanadate-sensitive (P-type) ATPase activities were inhibited by the addition of NaCl. In contrast, activity in the Z. marina PM fraction was not inhibited. The nitrate-sensitive (V-type) and azide-sensitive (F-type) ATPase activities in the Z. marina crude microsomal fraction and the cytoplasmic phosphoenolpyruvate carboxylase activity, however, were inhibited by NaCl, indicating that not all enzyme activities in Z. marina are insensitive to salt. Although the ratio of Na(+) to K(+) (Na(+)/K(+)) in seawater is about 30, Na(+)/K(+) in the Z. marina cells was about 1.0. The salt-tolerant ATPase activity in the plasma membrane must play an important role in maintaining a low Na(+) concentration in the seagrass cells.  相似文献   

20.
The properties of the inward-rectifying potassium current (IK1) were studied in the single myocytes isolated from adult mouse ventricles by the whole-cell patch-damp technique for the first time. Most of the properties of IK1 including channel conductances, activation, inactivation, rectification and external K sensitivity in mouse ventricular myocyte were similar to those in other species, but the current-voltage (1-V) curve of mouse ventricular myocyte showed no negative slope, i.e the slope in the range of membrane potential 50 mV positive to the reversal potential (VRev) was virtually flat and remained at a low current level ((59±39) pA). Under the superfusion of Tyrode's solution with 3mmol/L K and 3mmol/L Cs , IK1 in the above region nearly decreased to zero, and then the early after-depolarization (EAD) occurred. The results suggest that this distinctive characteristic of IK1 in mouse ventricular myocyte may relate to the high susceptibility to EA0 in mouse myocardium. The inhibition of IK1 se  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号