首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the regulatory mechanisms of systemic acquired resistance (SAR) in tomato, antagonistic interaction between salicylic acid (SA) and abscisic acid (ABA) signaling pathways was investigated. Treatment with 1,2-benzisothiazol-3(2H)-one1,1-dioxide (BIT) induced SAR in tomato thorough SA biosynthesis. Pretreatment of ABA suppressed BIT-induced SAR including SA accumulation, suggesting that ABA suppressed SAR by inhibiting SA biosynthesis.  相似文献   

2.
The role of salicylic acid (SA) as a possible signaling component in the case of the infection of plants with nematodes has been studied using a model system consisting of the tomato (Lycopersicon esculentum (Mill.) and race 1 of the gall eelworm Meloidogyne incognita (Kofoid and White, 1919; Chitwood, 1949). The preplanting SA treatment of tomato seeds results in an increased nematode resistance of susceptible tomato cultivars; the protective effect is higher in the case of SA combined with chitosan, a biogenic elicitor of plant resistance. The studied preparations stimulate the growth and development of the plants. The increase in the resistance of tomato plants is related to the increased activity of phenylalanine ammonia-lyase and an increased SA content in plant tissues infected with nematodes; both these factors significantly influence nematode development.  相似文献   

3.
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through the salicylic acid-mediated pathway. N-cyanomethyl-2-chloroisonicotinamide (NCI) is able to induce a broad range of disease resistance in tobacco and rice and induces SAR marker gene expression without SA accumulation in tobacco. To clarify the detailed mode of action of NCI, we analyzed its ability to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with NCI exhibited increased expression of several pathogenesis-related genes and enhanced resistance to the bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. NCI induced disease resistance and PR gene expression in NahG transgenic plants, but not in the npr1 mutant. NCI could induce PR gene expression in the etr1-1, ein2-1 and jar1-1 mutants. Thus, NCI activates SAR, independently from ethylene and jasmonic acid, by stimulating the site between SA and NPR1.  相似文献   

4.
Infection of plants, particularly by a necrotizing pathogen, usually induces a long-lasting, broad-based, systemic resistance to secondary pathogen attack. Many studies implicate salicylic acid as an essential signal in the development of such systemic acquired resistance in several plant species. Salicylic acid appears to mediate plant defence by binding to and inhibiting catalase, thus increasing the concentration of H(2)O(2) and other active oxygen species. Active oxygen species may then act as second messengers that induce plant defence gene expression, analogous to their activation of gene expression in mammalian cells.  相似文献   

5.
Harpin, the product of the hrpN gene of Erwinia amylovora, elicits the hypersensitive response and disease resistance in many plants. Harpin and known inducers of systemic acquired resistance (SAR) were tested on five genotypes of Arabidopsis thaliana to assess the role of SAR in harpin-induced resistance. In wild-type plants, harpin elicited systemic resistance to Peronospora parasitica and Pseudomonas syringae pv. tomato, accompanied by induction of the SAR genes PR-1 and PR-2. However, in experiments with transgenic Arabidopsis plants containing the nahG gene which prevents accumulation of salicylic acid (SA), harpin neither elicited resistance nor activated SAR gene expression. Harpin also failed to activate SAR when applied to nim1 (non-inducible immunity) mutants, which are defective in responding to SA and regulation of SAR. In contrast, mutants compromised in responsiveness to methyl jasmonate and ethylene developed the same resistance as did wild-type plants. Thus, harpin elicits disease resistance through the NIM1-mediated SAR signal transduction pathway in an SA-dependent fashion. The site of action of harpin in the SAR regulatory pathway is upstream of SA.  相似文献   

6.
7.
8.
Zhang W  Yang X  Qiu D  Guo L  Zeng H  Mao J  Gao Q 《Molecular biology reports》2011,38(4):2549-2556
Systemic acquired resistance (SAR) is an inducible defense mechanism which plays a central role in protecting plants from pathogen attack. A new elicitor, PeaT1 from Alternaria tenuissima, was expressed in Escherichia coil and characterized with systemic acquired resistance to tobacco mosaic virus (TMV). PeaT1-treated plants exhibited enhanced systemic resistance with a significant reduction in number and size of TMV lesions on wild tobacco leaves as compared with control. The quantitative analysis of TMV CP gene expression with real-time quantitative PCR showed there was reduction in TMV virus concentration after PeaT1 treatment. Similarly, peroxidase (POD) activity and lignin increased significantly after PeaT1 treatment. The real-time quantitative PCR revealed that PeaT1 also induced the systemic accumulation of pathogenesis-related gene, PR-1a and PR-1b which are the markers of systemic acquired resistance (SAR), NPR1 gene for salicylic acid (SA) signal transduction pathway and PAL gene for SA synthesis. The accumulation of SA and the failure in development of similar level of resistance as in wild type tobacco plants in PeaT1 treated nahG transgenic tobacco plants indicated that PeaT1-induced resistance depended on SA accumulation. The present work suggested that the molecular mechanism of PeaT1 inducing disease resistance in tobacco was likely through the systemic acquired resistance pathway mediated by salicylic acid and the NPR1 gene.  相似文献   

9.
Trichoderma spp. is one of the most commonly used biological control agents against plant pathogens. This fungus produces changes in plant metabolism, thus increasing growth and enhancing resistance to biotic and abiotic stresses. However, its modes of action remain to be defined. In the first hours of interaction between cucumber plant roots and Trichoderma asperellum strain T34, salicylic and jasmonic acid levels and typical antipathogenic peroxidase activity increase in the cotyledons to different degrees depending on the applied concentration of the fungi. The use of 2-DE protein profiling and MS analysis allowed us to identify 28 proteins whose expression was affected in cotyledons after cucumber root colonization by Trichoderma applied at high concentrations: 17 were found to be up-regulated while 11 were down-regulated. Proteins involved in ROS scavenging, stress response, isoprenoid and ethylene biosynthesis, and in photosynthesis, photorespiration, and carbohydrate metabolism were differentially regulated by Trichoderma. The proteome changes found in this study help to give an understanding of how Trichoderma-treated plants become more resistant to pathogen attacks through the changes in expression of a set of defence-oriented proteins which can directly protect the plant or switch the metabolism to a defensive, nonassimilatory state.  相似文献   

10.
Role of salicylic acid in resistance to cadmium stress in plants   总被引:4,自引:0,他引:4  

Key message

We review and introduce the importance of salicylic acid in plants under cadmium stress, and provide insights into potential regulatory mechanisms for alleviating cadmium toxicity.

Abstract

Cadmium (Cd) is a widespread and potentially toxic environmental pollutant, originating mainly from rapid industrial processes, the application of fertilizers, manures and sewage sludge, and urban activities. It is easily taken up by plants, resulting in obvious toxicity symptoms, including growth retardation, leaf chlorosis, leaf and root necrosis, altered structures and ultrastructures, inhibition of photosynthesis, and cell death. Therefore, alleviating Cd toxicity in plants is a major aim of plant research. Salicylic acid (SA) is a ubiquitous plant phenolic compound that has been used in many plant species to alleviate Cd toxicity by regulating plant growth, reducing Cd uptake and distribution in plants, protecting membrane integrity and stability, scavenging reactive oxygen species and enhancing antioxidant defense system, improving photosynthetic capacity. Furthermore, SA functions as a signaling molecule involved in the expression of several important genes. Significant amounts of research have focused on understanding SA functions and signaling in plants under Cd stress, but several questions still remain unanswered. In this article, the influence of SA on Cd-induced stress in plants and the potential regulation mechanism for alleviating Cd toxicity are reviewed.
  相似文献   

11.
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through asalicylic acid (SA)-mediated pathway. Here, we characterized 3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid (CMPA) as an effective SAR inducer in tobacco. Soil drench application of CMPA induced PR gene expression and a broad range of disease resistance without antibacterial activity in tobacco. Both analysis of CMPA's effects on NahG transgenic tobacco plants and SA measurement in wild-type plants indicated that CMPA-induced resistance enhancement does not require SA. Therefore, it is suggested that CMPA induces SAR by triggering the signaling at the same level as or downstream of SA accumulation as do both benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester and N-cyanomethyl-2-chloroisonicotinamide.  相似文献   

12.
Biosynthesis of salicylic acid in plants   总被引:1,自引:0,他引:1  
Salicylic acid (SA) is an important signal molecule in plants. Two pathways of SA biosynthesis have been proposed in plants. Biochemical studies using isotope feeding have suggested that plants synthesize SA from cinnamate produced by the activity of phenylalanine ammonia lyase (PAL). Silencing of PAL genes in tobacco or chemical inhibition of PAL activity in Arabidopsis, cucumber and potato reduces pathogen-induced SA accumulation. Genetic studies, on the other hand, indicate that the bulk of SA is produced from isochorismate. In bacteria, SA is synthesized from chorismate through two reactions catalyzed by isochorismate synthase (ICS) and isochorismate pyruvate lyase (IPL). Arabidopsis contains two ICS genes but has no gene encoding proteins similar to the bacterial IPL. Thus, how SA is synthesized in plants is not fully elucidated. Two recently identified Arabidopsis genes, PBS3 and EPS1, are important for pathogen-induced SA accumulation. PBS3 encodes a member of the acyl-adenylate/thioester-forming enzyme family and EPS1 encodes a member of the BAHD acyltransferase superfamily. PBS3 and EPS1 may be directly involved in the synthesis of an important precursor or regulatory molecule for SA biosynthesis. The pathways and regulation of SA biosynthesis in plants may be more complicated than previously thought.Key words: salicylic acid biosynthesis, isochorismate synthase, phenylalanine ammonia lyase  相似文献   

13.
After a hypersensitive response to invading pathogens, plants show elevated accumulation of salicylic acid (SA), induced expression of plant defense genes, and systemic acquired resistance (SAR) to further infection by a broad range of pathogens. There is compelling evidence that SA plays a crucial role in triggering SAR. We have transformed tobacco with two bacterial genes coding for enzymes that convert chorismate into SA by a two-step process. When the two enzymes were targeted to the chloroplasts, the transgenic (CSA, constitutive SA biosynthesis) plants showed a 500- to 1,000-fold increased accumulation of SA and SA glucoside compared to control plants. Defense genes, particularly those encoding acidic pathogenesis-related (PR) proteins, were constitutively expressed in CSA plants. This expression did not affect the plant phenotype, but the CSA plants showed a resistance to viral and fungal infection resembling SAR in nontransgenic plants.  相似文献   

14.
One-year-old olive (Olea europaea L. cv. Zard) plants were treated with 0.5, 1, and 2 mM salicylic acid (SA) and then exposed to nonfreezing and freezing temperatures (?5, ?10, and ?20°C) for 10 h. Untreated plants served as a control. Exposure to freezing temperatures caused a considerable increase in ion leakage and lipid peroxidation in olive leaves. Treatment with suitable exogenous SA (1.0 mM) prevented the increase in the ion leakage and lipid peroxidation caused by freezing temperatures, especially at ?5 and ?10°C. SA-induced freezing tolerance was accompanied by increased activities of antioxidant enzymes, such as guaiacol peroxidase, catalase, ascorbate peroxidase, and polyphenol oxidase, as compared to control plants. Proline, total phenolic content, and antioxidant capacity of olive leaves were declined significantly after exposure to freezing temperature, and their content decreased with lowering of freezing temperatures, while treatment with 1 mM SA induced a significant increase in their content. As a summary of these results, suitable concentration of SA (1 mM) could enhance freezing tolerance of olive plant by increasing antioxidant enzyme activities and decreasing MDA content through cell membrane integrity maintenance.  相似文献   

15.
Systemic acquired resistance (SAR), a natural disease response in plants, can be induced chemically. Salicylic acid (SA) acts as a key endogenous signaling molecule that mediates SAR in dicotyledonous plants. However, the role of SA in monocotyledonous plants has yet to be elucidated. In this study, the mode of action of the agrochemical protectant chemical probenazole was assessed by microarray-based determination of gene expression. Cloning and characterization of the most highly activated probenazole-responsive gene revealed that it encodes UDP-glucose:SA glucosyltransferase (OsSGT1) , which catalyzes the conversion of free SA into SA O- β-glucoside (SAG). We found that SAG accumulated in rice leaf tissue following treatment with probenazole or 2,6-dichloroisonicotinic acid. A putative OsSGT1 gene from the rice cultivar Akitakomachi was cloned and the gene product expressed in Escherichia coli was characterized, and the results suggested that probenazole-responsive OsSGT1 is involved in the production of SAG. Furthermore, RNAi-mediated silencing of the OsSGT1 gene significantly reduced the probenazole-dependent development of resistance against blast disease, further supporting the suggestion that OsSGT1 is a key mediator of development of chemically induced disease resistance. The OsSGT1 gene may contribute to the SA signaling mechanism by inducing up-regulation of SAG in rice plants.  相似文献   

16.
Genetic dissection of systemic acquired resistance.   总被引:17,自引:0,他引:17  
  相似文献   

17.
水杨酸对黄瓜幼苗抗高温胁迫能力的影响   总被引:31,自引:0,他引:31  
孙艳  王鹏 《西北植物学报》2003,23(11):2011-2013
对津绿2号黄瓜四叶期的幼苗分别喷施0、50、100和200μmol·L-1的水杨酸(SA)溶液,24h后以42℃的高温胁迫24h。结果表明:不同浓度的SA溶液均可降低黄瓜叶片中的相对电导率和丙二醛(MDA)含量,增加SOD活性,以50μmol·L-1的效果最优。但相对电导率和MDA含量的降幅及SOD活性的增幅则随SA浓度的增加而减小。  相似文献   

18.
In the present study, the efficacy of aqueous fruit extract of Azadirachta indica A. Juss. (Neem) on induction of systemic acquired resistance (SAR) in tomato against Pseudomonas syringae pv. tomato through enhancement in the activity of polyphenol oxidase (PPO) at different ages was studied. Plants at 6, 8, 10 and 12?weeks of age were selected. A single leaf at the third node from the base of each plant was treated either singly or with different combinations of the pathogen and Neem fruit extract. Samples were collected from the non-treated leaves at an interval of 24?h up to five?days for enzyme assay and after two?weeks for disease development from both treated and untreated plants. The results demonstrate that the neem fruit extract could induce additional PPO isoforms both locally as well as systemically. The PPO activity was observed to be elevated in both the treated and non-treated leaves leading to induction of SAR. The induction of SAR enhances with the increase in the age of the plant.  相似文献   

19.
20.
Heptanoyl salicylic acid (HSA) is a salicylic acid (SA) derivative obtained by esterification of 2-OH benzoic acid with heptanoic acid. In wheat, the protection levels obtained against Blumeria graminis f. sp. tritici (Bgt) increased from 50% with SA to 95% with HSA. Using molecular, biochemical and cytological approaches, we investigated here how wheat lipid metabolism is differentially activated by SA and HSA in both infectious and non-infectious conditions, and how Bgt infectious process is altered by both inducers. First, in the absence of Bgt, continuous lipoxygenase (LOX)-encoding gene expression and corresponding activity were specifically induced by HSA. Moreover, compared to SA, HSA treatment resulted in earlier up-regulations of the phospholipase C2-encoding gene expression and it specifically affected the expression of a lipid transfer protein-encoding gene. In infectious context, both HSA and SA sprayings impaired penetration events and therefore haustorium formation, leading to less frequent fungal colonies. While this alteration only slowed down the evolution of Bgt infectious process in SA-sprayed leaves, it completely impaired the establishment of successful infectious events in HSA-sprayed leaves. In addition, HSA induced continuous increases of a LOX-encoding gene expression and of the corresponding LOX activity when compared to SA-sprayed leaves. Lipid metabolism is therefore overall highly responsive to HSA spraying and could represent effective defence mechanism triggered during the induction of resistance in wheat toward Bgt. The concepts of priming and energy costs of the defences induced by SA and HSA are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号