首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Human rhinovirus serotype 1A (HRV1A) binds more strongly to the mouse low-density lipoprotein receptor (LDLR) than to the human homologue (M. Reithmayer, A. Reischl, L. Snyers, and D. Blaas, J. Virol. 76:6957-6965, 2002). Here, we used this fact to determine the binding site of HRV1A by replacing selected ligand binding modules of the human receptor with the corresponding ligand binding modules of the mouse receptor. The chimeric proteins were expressed in mouse fibroblasts deficient in endogenous LDLR and LDLR-related protein, both used by minor group HRVs for cell entry. Binding was assessed by virus overlay blots, by immunofluorescence microscopy, and by measuring cell attachment of radiolabeled virus. Replacement of ligand binding repeat 5 of the human LDLR with the corresponding mouse sequence resulted in a substantial increase in HRV1A binding, whereas substitution of repeats 3 and 4 was without effect. Replacement of human receptor repeats 1 and 2 with the murine homologues also increased virus binding. Finally, murine receptor modules 1, 2, and 5 simultaneously introduced into the human receptor resulted in HRV1A binding indistinguishable from mouse wild-type receptor. Thus, repeats 1 and/or 2 and repeat 5 are involved in HRV1A attachment. Changing CDGGPD in the acidic cluster of module 5 in the human receptor to CDGEAD present in the mouse receptor led to substantially increased binding of HRV1A, indicating an important role of the glutamate residue in HRV1A recognition.  相似文献   

2.
Minor group human rhinoviruses (HRVs) bind members of the low-density lipoprotein receptor family for cell entry. The ligand-binding domains of these membrane proteins are composed of various numbers of direct repeats of about 40 amino acids in length. Residues involved in binding of module 3 (V3) of the very-low-density lipoprotein receptor (VLDLR) to HRV2 have been identified by X-ray crystallography (N. Verdaguer, I. Fita, M. Reithmayer, R. Moser, and D. Blaas, Nat. Struct. Mol. Biol. 11:429-434, 2004). Sequence comparisons of the eight repeats of VLDLR with respect to the residues implicated in the interaction between V3 and HRV2 suggested that (in addition to V3) V1, V2, V5, and V6 also fulfill the requirements for interacting with the virus. Using a highly sensitive binding assay employing phage display, we demonstrate that single modules V2, V3, and V5 indeed bind HRV2. However, V1 does not. A single mutation from threonine 17 to proline converted the nonbinding wild-type form of V1 into a very strong binder. We interpret the dramatic increase in affinity by the generation of a hydrophobic patch between virus and receptor; in the presence of threonine, the contact area might be disturbed. This demonstrates that the interaction between virus and its natural receptors can be strongly enhanced by mutation.  相似文献   

3.
Like all 10 minor receptor group human rhinoviruses (HRVs), HRV23 and HRV25, previously classified as major group viruses, are neutralized by maltose binding protein (MBP)-V33333 (a soluble recombinant concatemer of five copies of repeat 3 of the very-low-density lipoprotein receptor fused to MBP), bind to low-density lipoprotein receptor in virus overlay blots, and replicate in intercellular adhesion molecule 1 (ICAM-1)-negative COS-7 cells. From phylogenetic analysis of capsid protein VP1-coding sequences, they are also known to cluster together with other minor group strains. Therefore, they belong to the minor group; there are now 12 minor group and 87 major group HRV serotypes. Sequence comparison of the VP1 capsid proteins of all HRVs revealed that the lysine in the HI loop, strictly conserved in the 12 minor group HRVs, is also present in 9 major group serotypes that are neutralized by soluble ICAM-1. Despite the presence of this lysine, they are not neutralized by MBP-V33333 and fail to replicate in COS-7 cells and in HeLa cells in the presence of an ICAM-1-blocking antibody. These nine serotypes are therefore "true" major group viruses.  相似文献   

4.
The very-low-density lipoprotein receptor (VLDL-R) is a receptor for the minor-group human rhinoviruses (HRVs). Only two of the eight binding repeats of the VLDL-R bind to HRV2, and their footprints describe an annulus on the dome at each fivefold axis. By studying the complex formed between a selection of soluble fragments of the VLDL-R and HRV2, we demonstrate that it is the second and third repeats that bind. We also show that artificial concatemers of the same repeat can bind to HRV2 with the same footprint as that for the native receptor. In a 16-A-resolution cryoelectron microscopy map of HRV2 in complex with the VLDL-R, the individual repeats are defined. The third repeat is strongly bound to charged and polar residues of the HI and BC loops of viral protein 1 (VP1), while the second repeat is more weakly bound to the neighboring VP1. The footprint of the strongly bound third repeat extends down the north side of the canyon. Since the receptor molecule can bind to two adjacent copies of VP1, we suggest that the bound receptor "staples" the VP1s together and must be detached before release of the RNA can occur. When the receptor is bound to neighboring sites on HRV2, steric hindrance prevents binding of the second repeat.  相似文献   

5.
The sequences of the capsid protein VP1 of all minor receptor group human rhinoviruses were determined. A phylogenetic analysis revealed that minor group HRVs were not more related to each other than to the nine major group HRVs whose sequences are known. Examination of the surface exposed amino acid residues of HRV1A and HRV2, whose X-ray structures are available, and that of three-dimensional models computed for the remaining eight minor group HRVs indicated a pattern of positively charged residues within the region, which, in HRV2, was shown to be the binding site of the very-low-density lipoprotein (VLDL) receptor. A lysine in the HI loop of VP1 (K224 in HRV2) is strictly conserved within the minor group. It lies in the middle of the footprint of a single repeat of the VLDL receptor on HRV2. Major group virus serotypes exhibit mostly negative charges at the corresponding positions and do not bind the negatively charged VLDL receptor, presumably because of charge repulsion.  相似文献   

6.
The formation of complexes between the minor receptor group human rhinovirus HRV2 and two recombinant soluble receptor fragments derived from the human very low density lipoprotein receptor (VLDLR) and containing ligand-binding repeats 1-3 (MBP.VLDLR(1-3)) or 1-8 (MBP.VLDLR(1-8)) fused to the carboxyl terminus of the maltose-binding protein was analyzed by affinity capillary electrophoresis. At low molar ratios of receptor/virus, the peaks corresponding to substoichiometric complexes were broad indicating heterogeneity. When the receptors were present in molar excess with respect to the virus, the peaks were sharp, suggesting saturation of all binding sites. For the determination of the stoichiometry, constant amounts of receptor were incubated with increasing amounts of virus, and the peak areas corresponding to free receptor were measured and plotted versus total virus concentration. Extrapolation of the linear part of the resulting curve to zero concentration of free receptor enabled quantitation of the molar ratios of the components present in the complex. Using this method, we determined that about 60 molecules of MBP.VLDLR(1-3) but only about 30 molecules of MBP.VLDLR(1-8) were bound per virion.  相似文献   

7.
An attempt has been made to build a model of human rhinovirus 2 (HRV2) based on the known human rhinovirus 14 (HRV14) structure. HRV2 was selected because its amino acid sequence is known and because it belongs to the minor rhinovirus receptor class as compared to HRV14, which belongs to the major class. Initial alignment of HRV2 with HRV14 based on the primary sequence and the knowledge of the three-dimensional structure of HRV14 showed that the most probable position of the majority of insertions and deletions occurred in the vicinity of the neutralizing immunogenic sites (NIm). Out of a total of 855 amino acids present in one copy of each of the capsid proteins VP1 through VP4 of HRV14, 411 are different between the two viruses. There are also 6 amino acid residues inserted and 14 residues deleted in HRV2 relative to HRV14. Examination of amino acid interactions showed several cases of conservation of function, e.g., salt bridges or the filling of restricted space. The largest variation amongst the residues lining the canyon, the putative receptor binding site, was in the carboxy-terminal residues of VP1.  相似文献   

8.
Although many viral receptors have been identified, the ways in which they interact with their cognate viruses are not understood at the molecular level. We have determined the X-ray structure of a complex between calcium-containing modules of the very low-density lipoprotein receptor and the minor group human rhinovirus HRV2. The receptor binds close to the icosahedral five-fold vertex, with only one module per virus protomer. The binding face of this module is defined by acidic calcium-chelating residues and, in particular, by an exposed tryptophan that is highly conserved. The attachment site on the virus involves only residues from VP1, particularly a lysine strictly conserved in all minor group HRVs. The disposition of the attached ligand-binding repeats around the five-fold axis, together with the proximity of the N- and C-terminal ends of adjacent modules, suggests that more than one repeat in a single receptor molecule might attach simultaneously.  相似文献   

9.
《Gene》1998,216(1):103-111
A gene encoding a novel transmembrane protein was identified by DNA sequence analysis within the insulin-dependent diabetes mellitus (IDDM) locus IDDM4 on chromosome 11q13. Based on its chromosomal position, this gene is a candidate for conferring susceptibility to diabetes. The gene, termed low-density lipoprotein receptor related protein 5 (LRP5), encodes a protein of 1615 amino acids that contains conserved modules which are characteristic of the low-density lipoprotein (LDL) receptor family. These modules include a putative signal peptide for protein export, four epidermal growth factor (EGF) repeats with associated spacer domains, three LDL-receptor (LDLR) repeats, a single transmembrane spanning domain, and a cytoplasmic domain. The encoded protein has a unique organization of EGF and LDLR repeats; therefore, LRP5 likely represents a new category of the LDLR family. Both human and mouse LRP5 cDNAs have been isolated and the encoded mature proteins are 95% identical, indicating a high degree of evolutionary conservation.  相似文献   

10.
Major receptor group common cold virus HRV89 was adapted to grow in HEp-2 cells, which are permissive for minor group human rhinoviruses (HRVs) but which only marginally support growth of major-group viruses. After 32 blind passages in these cells, each alternating with boosts of the recovered virus in HeLa cells, HRV89 acquired the capacity to effectively replicate in HEp-2 cells, attaining virus titers comparable to those in HeLa cells although no cytopathic effect was observed. Several clones were isolated and shown to replicate in HeLa cells whose ICAM-1 was blocked with monoclonal antibody R6.5 and in COS-7 cells, which are devoid of ICAM-1. Blocking experiments with recombinant very-low-density lipoprotein receptor fragments and enzyme-linked immunosorbent assays indicated that the mutants bound a receptor different from that used by minor-group viruses. Determination of the genomic RNA sequence encoding the capsid protein region revealed no changes in amino acid residues at positions equivalent to those involved in the interaction of HRV14 or HRV16 with ICAM-1. One mutation was within the footprint of a very-low-density lipoprotein receptor fragment bound to minor-group virus HRV2. Since ICAM-1 not only functions as a vehicle for cell entry but has also a "catalytic" function in uncoating, the use of other receptors must have important consequences for the entry pathway and demonstrates the plasticity of these viruses.  相似文献   

11.
The cellular receptor for subgroup A avian leukosis viruses (ALV-A) has a small, 83-amino-acid extracellular domain containing a motif that is related in sequence to the ligand binding repeats of the low-density lipoprotein receptor. Extensive mutagenesis of the ALV-A receptor has identified two acidic amino acids (Asp-46 and Glu-47) and an adjacent aromatic amino acid (Trp-48) in the carboxy-terminal portion of this low-density lipoprotein receptor-related motif that are crucial for efficient viral entry. In addition, a 19-amino-acid peptide derived from this region efficiently and specifically blocked subgroup A viral infection when oxidized to form a disulfide bond previously predicted to form in the native receptor (C. Bélanger, K. Zingler, and J. A. T. Young, J. Virol. 69:1019-1024, 1995). Thus, the charged and aromatic amino acid determinants that are required for viral infection appear to lie on a small loop region of the ALV-A receptor. Previously, a single aromatic and one or more charged residues on the CD4 receptor for human and simian immunodeficiency viruses, and the MCAT receptor for ecotropic murine leukemia viruses, were shown to be important for viral entry. These results suggest that different retroviruses may recognize related determinants on structurally divergent cellular receptors.  相似文献   

12.
Crystal structure of human rhinovirus serotype 1A (HRV1A)   总被引:21,自引:0,他引:21  
The structure of human rhinovirus 1A (HRV1A) has been determined to 3.2 A resolution using phase refinement and extension by symmetry averaging starting with phases at 5 A resolution calculated from the known human rhinovirus 14 (HRV14) structure. The polypeptide backbone structures of HRV1A and HRV14 are similar, but the exposed surfaces are rather different. Differential charge distribution of amino acid residues in the "canyon", the putative receptor binding site, provides a possible explanation for the difference in minor versus major receptor group specificities, represented by HRV1A and HRV14, respectively. The hydrophobic pocket in VP1, into which antiviral compounds bind, is in an "open" conformation similar to that observed in drug-bound HRV14. Drug binding in HRV1A does not induce extensive conformational changes, in contrast to the case of HRV14.  相似文献   

13.
Structure of human rhinovirus serotype 2 (HRV2)   总被引:7,自引:0,他引:7  
Human rhinoviruses are classified into a major and a minor group based on their binding to ICAM-1 or to members of the LDL-receptor family, respectively. They can also be divided into groups A and B, according to their sensitivity towards a panel of antiviral compounds. The structure of human rhinovirus 2 (HRV2), which uses the LDL receptor for cell attachment and is included in antiviral group B, has been solved and refined at 2.6 A resolution by X-ray crystallography to gain information on the peculiarities of rhinoviruses, in particular from the minor receptor group. The main structural differences between HRV2 and other rhinoviruses, including the minor receptor group serotype HRV1A, are located at the internal protein shell surface and at the external antigenic sites. In the interior, the N termini of VP1 and VP4 form a three-stranded beta-sheet in an arrangement similar to that present in poliovirus, although myristate was not visible at the amino terminus of VP4 in the HRV2 structure. The betaE-betaF loop of VP2, a linear epitope within antigenic site B recognized by monoclonal antibody 8F5, adopts a conformation considerably different from that found in the complex of 8F5 with a synthetic peptide of the same sequence. This either points to considerable structural changes impinged on this loop upon antibody binding, or to the existence of more than one single conformation of the loop when the virus is in solution. The hydrophobic pocket of VP1 was found to be occupied by a pocket factor apparently identical with that present in the major receptor group virus HRV16. Electron density, consistent with the presence of a viral RNA fragment, is seen stacked against a conserved tryptophan residue.  相似文献   

14.
15.
Human rhinovirus serotype 2 (HRV2) belongs to the minor group of HRVs that bind to members of the LDL-receptor family including the very low density lipoprotein (VLDL)-receptor (VLDL-R). We have determined the structures of the complex between HRV2 and soluble fragments of the VLDL-R to 15 A resolution by cryo-electron microscopy. The receptor fragments, which include the first three ligand-binding repeats of the VLDL-R (V1-3), bind to the small star-shaped dome on the icosahedral 5-fold axis. This is in sharp contrast to the major group of HRVs where the receptor site for ICAM-1 is located at the base of a depression around each 5-fold axis. Homology models of the three domains of V1-3 were used to explore the virus-receptor interaction. The footprint of VLDL-R on the viral surface covers the BC- and HI-loops on VP1.  相似文献   

16.
A recently recognized human rhinovirus species C (HRV-C) is associated with up to half of HRV infections in young children. Here we propagated two HRV-C isolates ex vivo in organ culture of nasal epithelial cells, sequenced a new C15 isolate and developed the first, to our knowledge, reverse genetics system for HRV-C. Using contact points for the known HRV receptors, intercellular adhesion molecule-1 (ICAM-1) and low-density lipoprotein receptor (LDLR), inter- and intraspecies footprint analyses predicted a unique cell attachment site for HRV-Cs. Antibodies directed to binding sites for HRV-A and -B failed to inhibit HRV-C attachment, consistent with the alternative receptor footprint. HRV-A and HRV-B infected HeLa and WisL cells but HRV-C did not. However, HRV-C RNA synthesized in vitro and transfected into both cell types resulted in cytopathic effect and recovery of functional virus, indicating that the viral attachment mechanism is a primary distinguishing feature of HRV-C.  相似文献   

17.
Human rhinovirus 2 (HRV2) is internalized by members of the low-density lipoprotein receptor family into early endosomes (pH 6.2-6.0) where it dissociates from its receptors. After transfer into late endosomes, the virus undergoes a conformational change and RNA uncoating solely induced by pH < 5.6. Finally, virus capsids are degraded in lysosomes. To investigate the role of phosphatidylinositol 3-kinases (PI3K) in the HRV2 entry route, we used the inhibitor wortmannin. Although virus internalization was not altered by wortmannin, virus accumulated in enlarged early endosomes. Furthermore, the drug delayed HRV2 degradation and viral protein synthesis. Consequently, wortmannin-sensitive PI3K are involved in HRV2 transport from early to late compartments. However, wortmannin had no effect on the titer of infectious virus produced. Our data therefore suggest that virus retained in early endosomes for prolonged time periods can undergo the conformational change that otherwise occurs at pH < or = 5.6 in late endosomes.  相似文献   

18.
Human rhinoviruses (HRVs) are composed of 60 identical subunits, each comprising one copy of the viral capsid proteins VP1, 2, 3, and 4. Consequently, 60 symmetry-related epitopes are available for binding of antibodies or receptors. The minor receptor group of HRVs uses members of the low-density lipoprotein receptor family for cell entry. The ligand binding domains of these receptors are composed of various numbers of ligand binding repeats, and several of these modules within a single molecule are believed to attach simultaneously to the star-shaped dome at the 5-fold symmetry axis of the virus. Using fluorescence correlation spectroscopy (FCS), we have now determined the equilibrium binding constants and the mode of attachment of recombinant concatemers of ligand binding module 3 of the human very-low-density lipoprotein receptor to HRV2. We demonstrate that the avidity of the interaction drastically increases with the number of concatenated modules. For the trimer, the binding isotherm was biphasic, indicating that attachment of two and of three modules within the same molecule was resolved. The receptor consisting of seven repeats was found to bind most strongly, but a complete binding isotherm could not be established due to cross-linking of virions. The values of the dissociation constants were about 1 order of magnitude higher than those previously determined by using surface plasmon resonance techniques reflecting the different presentation of the binding partners. As compared to the concatemers, the natural receptors are composed of similar but not identical repeats; thus, cooperativity and different specificity of the ligand-binding modules allow for recognition of many ligands and viral serotypes. Due to the low concentrations and amounts of sample required, FCS is ideally suited for the determination of receptor binding parameters of viruses difficult to produce in high quantities and/or concentrations.  相似文献   

19.
Hewat EA  Blaas D 《Journal of virology》2004,78(6):2935-2942
Release of the human rhinovirus (HRV) genome into the cytoplasm of the cell involves a concerted structural modification of the viral capsid. The intracellular adhesion molecule 1 (ICAM-1) cellular receptor of the major-group HRVs and the low-density lipoprotein (LDL) receptor of the minor-group HRVs have different nonoverlapping binding sites. While ICAM-1 binding catalyzes uncoating, LDL receptor binding does not. Uncoating of minor-group HRVs is initiated by the low pH of late endosomes. We have studied the conformational changes concomitant with uncoating in the major-group HRV14 and compared them with previous results for the minor-group HRV2. The structure of empty HRV14 was determined by cryoelectron microscopy, and the atomic structure of native HRV14 was used to examine the conformational changes of the capsid and its constituent viral proteins. For both HRV2 and HRV14, the transformation from full to empty capsid involves an overall 4% expansion and an iris type of movement of viral protein VP1 to open up a 10-A-diameter channel on the fivefold axis to allow exit of the RNA genome. The beta-cylinders formed by the N termini of the VP3 molecules inside the capsid on the fivefold axis all open up in HRV2, but we propose that only one opens up in HRV14. The release of VP4 is less efficient in HRV14 than in HRV2, and the N termini of VP1 may exit at different points. The N-terminal loop of VP2 is modified in both viruses, probably to detach the RNA, but it bends only inwards in HRV2.  相似文献   

20.
The ligand binding domain of the low density lipoprotein (LDL) receptor contains seven imperfect repeats of a 40-amino acid cysteine-rich sequence. Each repeat contains clustered negative charges that have been postulated as ligand-binding sites. The adjacent region of the protein, the growth factor homology region, contains three cysteine-rich repeats (A-C) whose sequence differs from those in the ligand binding domain. To dissect the contribution of these different cysteine-rich repeats to ligand binding, we used oligonucleotide-directed mutagenesis to alter expressible cDNAs for the human LDL receptor which were then introduced into monkey COS cells by transfection. We measured the ability of the mutant receptors to bind LDL, which contains a single protein ligand for the receptor (apoB-100), and beta-migrating very low density lipoprotein (beta-VLDL), which contains apoB-100 plus multiple copies of another ligand (apoE). The results show that repeat 1 is not required for binding of either ligand. Repeats 2 plus 3 and repeats 6 plus 7 are required for maximal binding of LDL, but not beta-VLDL. Repeat 5 is required for binding of both ligands. Repeat A in the growth factor homology region is required for binding of LDL, but not beta-VLDL. Repeat B is not required for ligand binding. These results support a model for the LDL receptor in which various repeats play additive roles in ligand binding, each repeat making a separate contribution to the binding event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号