首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of our research was to assess if arbuscular mycorrhizal (AM) fungal colonization can modify the effect of infection by two aster yellows phytoplasma strains (AY1, AYSim) in Catharanthus roseus plants. Both phytoplasma strains had a negative effect on the root fresh weight, but they differed in symptoms appearance and in their influence on photosynthetic and transpiration rates of the periwinkle plants. AM plants showed significantly reduced shoot fresh weight, while the transpiration rate was significantly increased. AM fungal colonization significantly affected shoot height and fresh weight of the plants infected by each phytoplasma strains as well as the root system of plants infected with the more aggressive AYSim phytoplasma strain. Double inoculation did not reduce the negative effects induced with phytoplasma alone on the photosynthetic activity of phytoplasma-infected plants.  相似文献   

2.
In 1996–1998 on Gladiolus plants cultivated in Poland severe symptoms were observed. The symptoms included chlorosis of the youngest leaves, yellowing and malformation of flower spices, flower discoloration and virescence. The affected corms kept in cold storage developed premature multiple sprouts weak and pale in color. Their root formation was strongly inhibited. Electron microscopy examination of the ultra-thin sections of the leaves and roots of diseased plants showed necrosis and collapsing of sieve tubes and companion cells, reduction of phloem and xylem strands as well as decrease of the number and diameter of xylem vessels. Numerous polymorphic bodies were observed in the phloem and parenchyma cells of affected gladioli. PCR amplification using universal phytoplasma primers rU3 and fU5 directed to ribosomal sequences and RFLP analysis of the amplified rDNA were used to identify the phytoplasma causing yellow disease in Poland. Specific product of about 880 bp was obtained, providing evidence of phytoplasma infection. RFLP analysis of the PCR product done with restriction enzyme AluI showed that the diseased gladioli were infected by phytoplasma very similar or identical with American aster yellows phytoplasma.  相似文献   

3.
Typical phytoplasma yellows symptoms were observed in parsnip (Pastinaca sativa L.) plants grown around Edmonton, Alberta, Canada. Examination of ultrathin sections of leaf midribs by electron microscopy revealed numerous phytoplasma bodies localized in the phloem cells. DNA extracted from the infected leaves was amplified with a 16S rDNA universal primer pair P1/P6 giving the expected PCR product of 1.5 kb. The phytoplasma was confirmed as a member of the aster yellows (AY) group by amplification with the specific primer pair R16(1)/F1/R1 that was designed on the basis of AY phytoplasma 16S rDNA sequences. In the nested PCR assays, the expected DNA fragment of 1.1 kb was amplified with this specific primer set. Similar restriction patterns were found for the 1.1 kb PCR products of the phytoplasma isolated from parsnip and an AY phytoplasma control after digestion with restriction endonucleases AluI, HhaI, KpnI and RsaI. This is the first reported observation of aster yellows in parsnip in Canada.  相似文献   

4.
In the summer of 1999, typical yellows-type symptoms were observed on garlic and green onion plants in a number of gardens and plots around Edmonton, Alberta, Canada. DNA was extracted from leaf tissues of evidently healthy and infected plants. DNA amplifications were conducted on these samples, using two primer pairs, R16F2n/R2 and R16(1)F1/R1, derived from phytoplasma rDNA sequences. DNA samples of aster yellows (AY), lime witches'-broom (LWB) and potato witches'-broom (PWB) phytoplasmas served as controls and were used to determine group relatedness. In a direct polymerase chain reaction (PCR) assay, DNA amplification with universal primer pair R16F2n/R2 gave the expected amplified products of 1.2 kb. Dilution (1/40) of each of the latter products were used as template and nested with specific primer pair R16(1)F1/R1. An expected PCR product of 1.1 kb was obtained from each phytoplasma-infected garlic and green onion samples, LWB and AY phytoplasmas but not from PWB phytoplasma. An aliquot from each amplification product (1.2 kb) with universal primers was subjected to PCR-based restriction fragment length polymorphism (RFLP) to identify phytoplasma isolates, using four restriction endonucleases (AluI, KpnI, MseI and RsaI). DNA amplification with specific primer pair R16(1)F1/R1 and RFLP analysis indicated the presence of AY phytoplasma in the infected garlic and green onion samples. These results suggest that AY phytoplasma in garlic and green onion samples belong to the subgroup 16Sr1-A.  相似文献   

5.
Queen Anne's lace and poker statice plants were found with a yellows-type disease with typical phytoplasma symptoms in an experimental farm near Brooks, Alberta in 1996. Phytoplasma bodies were detected by transmission electron microscopy in phloem cells of symptomatic plants, but not in healthy plants. The presence of a phytoplasma was confirmed by analysis with the polymerase chain reaction. Using a pair of universal primer sequences derived from phytoplasma 16S rRNA, an amplified product of the expected size (1.2 kb) was observed in samples from infected plants, but not in asymptomatic plants. Sequence analysis of the PCR products from the 16S/23S rDNA intergenic spacer region indicated that the two phytoplasma isolates in Queen Anne's lace and poker statice are genetically closely related to the western aster yellows phytoplasma.  相似文献   

6.
The aster yellows phytoplasma (AYp) is transmitted by the aster leafhopper, Macrosteles quadrilineatus Forbes, in a persistent and propagative manner. To study AYp replication and examine the variability of AYp titer in individual aster leafhoppers, we developed a quantitative real-time polymerase chain reaction assay to measure AYp concentration in insect DNA extracts. Absolute quantification of AYp DNA was achieved by comparing the amplification of unknown amounts of an AYp target gene sequence, elongation factor TU (tuf), from whole insect DNA extractions, to the amplification of a dilution series containing known quantities of the tuf gene sequence cloned into a plasmid. The capabilities and limitations of this method were assessed by conducting time course experiments that varied the incubation time of AYp in the aster leafhopper from 0 to 9 d after a 48 h acquisition access period on an AYp-infected plant. Average AYp titer was measured in 107 aster leafhoppers and, expressed as Log10 (copies/insect), ranged from 3.53 (+/- 0.07) to 6.26 (+/- 0.11) occurring at one and 7 d after the acquisition access period. AYp titers per insect and relative to an aster leafhopper chromosomal reference gene, cp6 wingless (cp6), increased approximately 100-fold in insects that acquired the AYp. High quantification cycle values obtained for aster leafhoppers not exposed to an AYp-infected plant were interpreted as background and used to define a limit of detection for the quantitative real-time polymerase chain reaction assay. This method will improve our ability to study biological factors governing AYp replication in the aster leafhopper and determine if AYp titer is associated with frequency of transmission.  相似文献   

7.
In October 2013, a new disease affecting purple woodnettle, Oreocnide pedunculata, plants was found in Miaoli County, Taiwan. Diseased plants exhibited leaf yellowing and witches'‐broom symptoms. Molecular diagnostic tools and electron microscopic cell observation were used to investigate the possible cause of the disease with a specific focus on phytoplasmas. The result of polymerase chain reaction with universal primer pairs indicated that phytoplasmas were strongly associated with the symptomatic purple woodnettles. The virtual restriction fragment length polymorphism (RFLP) patterns and phylogenetic analysis based on 16S rDNA and ribosomal protein, rplV‐rpsC region revealed that purple woodnettle witches'‐broom phytoplasma (PWWB) belongs to a new subgroup of 16SrI and rpI group and was designated as 16SrI‐AH and rpI‐Q, respectively, herein. RFLP analysis based on tuf gene region revealed that the PWWB belongs to tufI‐B, but phylogenetic analysis suggested that PWWB should be delineated to a new subgroup under the tufI group. Taken together, our analyses based on 16S rRNA and rplV‐rpsC region gave a finer differentiation while classifying the subgroup of aster yellows group phytoplasmas. To our knowledge, this is the first report of a Candidatus Phytoplasma asteris‐related strain in 16SrI‐AH, rpI‐Q and tufI‐B subgroup affecting purple woodnettle, and of an official documentation of purple woodnettle as being a new host of phytoplasmas.  相似文献   

8.
An azalea little leaf (AzLL) disease characterised by abnormally small leaves, yellowing and witches'‐broom growth symptoms was observed in suburban Kunming, southwest China. Transmission electron microscopic observations of single‐membrane‐bound, ovoid to spherical bodies in phloem sieve elements of diseased plants and detection of phytoplasma‐characteristic 16S rRNA gene sequence in DNA samples from diseased plants provided evidence linking the disease to infection by a phytoplasma. Results from restriction fragment length polymorphism, phylogenetic and comparative structural analyses of multiple genetic loci containing 16S rRNA, rpsS, rplV, rpsC and secY genes indicated that the AzLL phytoplasma represented a distinct, new 16Sr subgroup lineage, designated as 16SrI‐T, in the aster yellows phytoplasma group. The genotyping also revealed that the AzLL phytoplasma represented new rp and secY gene lineages [rp(I)‐P and secY(I)‐O, respectively]. Phylogenetic analyses of secY and rp gene sequences allowed clearer distinctions between AzLL and closely related strains than did analysis of 16S rDNA.  相似文献   

9.
A new yellows disease of watercress (Nasturtium officinale) in Hawaii has symptoms of reduced leaf size, leaf yellowing and crinkling, and occasionally witches’ brooms. This disease is found on all watercress farms on Oahu but has not yet been found on other Hawaiian islands. Watercress plants were tested for phytoplasma infection by polymerase chain reaction assays using phytoplasma‐specific primers. Amplicons of the expected sizes were produced from all symptomatic plants but not from healthy plants raised from seed. Phylogenetic analysis of the 16S rRNA gene indicated that watercress yellows was caused by a phytoplasma in the aster yellows group, with sequence similarity to onion yellows from Japan. Six weed species collected from the vicinity of affected watercress farms, Amaranth sp., Eclipta prostrata, Emilia sonchifolia, Plantago major, Myriophyllum aquaticum and Sonchus oleraceus, were also determined to be hosts of this phytoplasma. Leafhoppers, identified as Macrosteles sp. (Hemiptera, Cicadellidae), collected from symptomatic watercress transmitted this phytoplasma to watercress, plantain and lettuce (Lactuca sativa) in greenhouse experiments.  相似文献   

10.
Novel insertion sequence (IS)-like elements were isolated and characterized from phytoplasma strains in the aster yellows (AY) group (16SrI). The IS-like elements were cloned from phytoplasma strains AY1 and NJAY or PCR-amplified from 15 additional strains representing nine subgroups in the AY group using primers based on sequences of the putative transposases (Tpases). All IS-like elements contained sequences encoding similar Tpases of 321 amino acids (320 for strain CPh). Substantial amino acid sequence variability suggested multiple species of Tpases or IS-like elements exist in the AY phytoplasma group. These Tpases have an identical DDE motif that is most similar to the DDE consensus of Tpases in the IS3 family.  相似文献   

11.
Aster yellows (AY) phytoplasmas (Candidatus Phytoplasma asteris) are associated with a number of plant diseases throughout the world. Several insect vectors are responsible for spreading AY diseases resulting in wide distribution and low host specificity. Because the role of sucking insects as vectors of phytoplasmas is widely documented, and the citrus flatid planthopper Metcalfa pruinosa is a phloem feeder, it has been incriminated as a possible vector of phytoplasmas. However, its ability to transfer phytoplasma has not been confirmed. The present work shows that M. pruinosa (Hemiptera: Flatidae), a polyphagous planthopper, is able to vector Ca. P. asteris to French marigold (Tagetes patula). Transmission experiments were conducted in 2017 and 2018 in central Hungary by two approaches: (a) AY-infected M. pruinosa were collected from an area with severe incidence of the disease on T. patula and caged on test plants for an inoculation-access period of 2 weeks, and (b) presumably phytoplasma-free insects were collected from apparently healthy grapevines (Vitis vinifera L.) and fed on AY-infected T. patula plants for 2 weeks prior to being caged on test plants. AY disease symptoms developed on 4 out of 10 and 10 out of 15 test plants, respectively. All phytoplasma-positive marigold and M. pruinosa samples showed identical RFLP patterns and shared 100% 16S rDNA sequence identity with each other and with the aster yellows phytoplasma strain AJ33 (GenBank accession number MK992774). These results indicated that the phytoplasma belonged to the phytoplasma subgroup 16SrI-B Ca. P. asteris. Therefore, the work presented here provides experimental evidence that M. pruinosa is a vector of a 16SrI-B subgroup phytoplasma to T. patula.  相似文献   

12.
将猪鼻支原体和泡桐丛枝病植原体的16S rDNA进行PCR扩增,分别得到一条1 kb左右的扩增片段。PCR扩增产物用限制性内切酶EcoRⅠ、HindⅢ、BamHⅠ、SalⅠ和SmaⅠ进行RFLP(限制性片段长度多态性)分析,发现用RFLP分析猪鼻支原体和泡桐丛枝病植原体16S rDNA序列同源性的相关系数为0.72。  相似文献   

13.
The degree of aggregation of lettuce plants infected by aster yellows phytoplasma (AYP) was investigated in 12 fields from three experiments. Position of diseased and healthy plants was mapped in a 6–9×12-m section of each field; for most analyses, fields were divided into 10-plant quadrats. Mean disease incidence (p) ranged from 0.01 to 0.30. The frequency of diseased plants was described by the beta-binomial distribution, with an index of aggregation (θ) ranging from 0 to 0.17, positively correlated withp, and generally increasing over time within a field. Distance-class analysis revealed a core-cluster size of only a few plants. However, spatial autocorrelations ofp between quadrats were not significant, indicating that the scale of spatial pattern was small, generally less than 10 plants. An overall measure of aggregation was given by the slope parameter of the binary form of the power law, in which the log of the calculated variance is regressed on the log of the theoretical variance for a binomial distribution. The slope was 1.18 and significantly different from 1. Results for this “simple-interest” disease are interpreted in relation to the persistent transmission of AYP by its aster leafhopper vector.  相似文献   

14.
Abstract

A phytoplasma was detected in cucumber (Cucumis sativus), exhibiting regional yellows symptoms in leaves, stem and fruits, that was grown in the greenhouse near Tehran (Iran). Since this is a previously undescribed disease, the name cucumber regional yellows have been tentatively assigned to it. Based on in silico RFLP and phylogenetic analysis of PCR-amplified 16S rDNA sequences, the phytoplasma associated with regional yellows disease was identified as a new member of phytoplasma 16S rRNA group VI (16SrVI-A) with closest relationships to zucchini phyllody phytoplasma (KP119494). According to our results, cucumber regional yellows phytoplasma could be designated as a subgroup VI-A.  相似文献   

15.
During a survey of large carrot fields in Serbia, plants showing leaf reddening and/or yellowing, adventitious shoot production and reduction in taproot size and quality were observed in a low percentage of plants. To verify phytoplasma association with the described symptoms and to carry out pathogen differentiation, PCR assays followed by restriction fragment length polymorphism (RFLP) analyses and/or sequencing of phytoplasma 16Sr DNA and ribosomal protein genes l22 and s3 , tuf , putative aa kinase plus ribosomal recycling factor genes and DNA helicase gene were carried out. Phytoplasmas belonging to 16SrI-A and 16SrI-B ribosomal subgroups and to rpI-A and rpI-B ribosomal protein subgroups, respectively, were identified by RFLP analyses in 13 of 15 symptomatic plants tested. No amplification was obtained with non-symptomatic carrot samples. The identification was confirmed by sequence analyses of the phytoplasma genes studied. In two carrot samples, presence of interoperon sequence heterogeneity was detected and phytoplasma strains were identified as belonging to 16SrI group but were not assigned to any 16S rRNA or ribosomal protein subgroup. This research allowed the first molecular identification of phytoplasmas infecting carrot in Serbia using several molecular markers, and it indicates that under field conditions in non-epidemic outbreaks a certain amount of genetic mutation may occur in conserved genes of these prokaryotes.  相似文献   

16.
The ultrastructure of an aster yellows mycoplasma-like organism was studied in the phloem of periwinkle (Vinca rosea L.) plants. Banded filaments were observed in association with mycoplasma-like organisms of characteristic morphology. The filaments were variable in length, from 50-100 nm in width, and displayed a regular periodic banding of alternating electron-dense and electron-lucent structures.  相似文献   

17.
Chrysanthemum yellows (CY) phytoplasma has been transmitted with three leafhopper species: Euscelidius variegatus (Kirschbaum), Macrosteles quadripunctulatus (Kirschbaum) and Euscelis incisus (Kirschbaum): the first two species are reported as CY phytoplasma vectors for the first time. Leafhoppers were allowed to acquire the pathogen from the following source plants: Apium graveolens L., Catharanthus roseus L., Chrysanthemum carinatum Schousboe L. and C. frutescens L. DNA extracted from healthy or inoculative leafhoppers-exposed plants were analyzed by dot-blot and Southern hybridizations with a molecular probe constructed onto a fragment of European aster yellows phytoplasma DNA. The three leafhopper species were able to transmit CY phytoplasma after acquisition on chrysanthemum, but only M. quadripunctulatus and E. variegatus transmitted after feeding on periwinkle, and none acquired it from celery. All plant species tested were susceptible to CY, but while chrysanthemum and periwinkle were suitable for both inoculation and acquisition, celery did not seem to be a good source of phytoplasma for further inoculations. It is concluded that host plants influence leafhoppers' vectoring ability, possibly due to the different feeding behaviour of the insects on diverse plant species. Since CY, like several other phytoplasmas, can be transmitted by different insect species, it is likely that a close transmission specificity probably does not exist between phytoplasmas and their leafhopper vectors.  相似文献   

18.
Supercoiled double-stranded DNA molecules (plasmids) were isolated from plants infected with three laboratory strains of western aster yellows mycoplasma-like organism (AY-MLO) by using cesium chloride-ethidium bromide density gradients. Southern blot analysis, using plasmids from the severe strain of AY-MLO (SAY-MLO) as the probe, identified at least four plasmids in celery, aster, and periwinkle plants and in Macrosteles severini leafhopper vectors infected with either the dwarf AY-MLO, Tulelake AY-MLO, or SAY-MLO strain. Plasmids were also detected in two California field isolates of AY-MLO but not in plants infected with the beet leafhopper-transmitted virescence agent, western X, or elm yellows MLOs. SAY-MLO plasmids were 5.2, 4.9, 3.4, and 1.7 kilobase pairs in size. Plasmids isolated from dwarf AY- and Tulelake AY-MLOs were 7.4, 5.1, 3.5, and 1.7 kilobase pairs in size. No evidence was obtained for integration of SAY-MLO plasmids into the MLO chromosome.  相似文献   

19.
Phytoplasmas are plant‐pathogenic Mollicutes transmitted by leafhoppers, planthoppers, and psyllids in a persistent propagative manner. Chrysanthemum yellows phytoplasma (CY) is a member of ‘Candidatus Phytoplasma asteris’, 16Sr‐IB, and is transmitted by at least three leafhopper species, Macrosteles quadripunctulatus Kirschbaum, Euscelidius variegatus Kirschbaum, and Euscelis incisus Kirschbaum (all Homoptera: Cicadellidae: Deltocephalinae). Although M. quadripunctulatus transmits CY with very high efficiency (near 100%), 25% of E. variegatus repeatedly fail to transmit CY. The aims of this work were to correlate vector ability with different pathogen distribution in the insect body and to investigate the role of midgut and salivary glands as barriers to CY transmission. Euscelidius variegatus individuals acquired CY by feeding on infected plants or by abdominal microinjection of a phytoplasma‐enriched suspension. Insects were individually tested for transmission on daisy seedlings [Chrysanthemum carinatum Schousboe (Asteraceae)], and thereafter analysed by real‐time polymerase chain reaction (PCR) for CY concentration on whole insects or separately on heads and the rest of the body. Hoppers were classified as early and late transmitters or non‐transmitters, according to the time inoculated plants required for expression of CY symptoms. Similar transmission efficiencies were achieved following feeding or abdominal microinjection, suggesting that salivary glands may be a major barrier to transmission. Following acquisition from infected plants, all transmitters tested positive by PCR, and 60% of non‐transmitters also tested positive although with a significantly lower CY concentration. This indicates that a minimum number of phytoplasma cells may be required for successful transmission. The midgut may have prevented phytoplasma entry into the haemocoel of PCR‐negative non‐transmitters. Results suggest that both midgut and salivary glands may act as barriers. To assess the effect on CY transmission of a specific parasitic bacterium of E. variegatus, tentatively named BEV (Bacterium Euscelidius variegatus), we established a BEV‐infected population by abdominal microinjection of BEV bacteria. The presence of BEV did not significantly alter the efficiency of CY transmission.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号