首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effect of Adriamycin on FL-amnion (FL) cells. After treatment with the drug, the cells arrested at G2, but we did not detect an increase in the p21 levels. We established a p53-deficient derivative of these cells, in which G2 arrest also occurred after treatment with Adriamycin, suggesting that the arrest we observed in these cells is independent of the p53 pathway. Low doses of Adriamycin (100-200 ng/ml) induced G2 arrest, while late S-phase arrest was observed at high doses (500-1000 ng/ml) in both FL and p53-deficient FL cells. Accumulation of cyclin B1 was detected only in cells arrested at G2, and not in those arrested at S phase, suggesting that the S-phase checkpoint functioned efficiently even in p53-deficient FL cells. In both cell lines, caffeine-induced activation of CDC2 kinase was detected only in cells arrested at G2 and CDC2 kinase-activated cells died exhibiting features of apoptosis. CDC2 kinase activation was inhibited by cycloheximide. Furthermore, cycloheximide inhibited activation of CDK2:cyclin A, which normally precedes CDC2 kinase activation in caffeine-treated cells. These results suggest that p53 and p21 do not have special roles in the S- and G2-phase checkpoints and that CDK2:cyclin A could be the target of the G2-phase DNA damage checkpoint.  相似文献   

2.
In response to DNA damage, ataxia-telangiectasia mutant and ataxia-telangiectasia and Rad-3 activate p53, resulting in either cell cycle arrest or apoptosis. We report here that DNA damage stimuli, including etoposide (ETOP), adriamycin (ADR), ionizing irradiation (IR), and ultraviolet irradiation (UV) activate ERK1/2 (ERK) mitogen-activated protein kinase in primary (MEF and IMR90), immortalized (NIH3T3) and transformed (MCF-7) cells. ERK activation in response to ETOP was abolished in ATM-/- fibroblasts (GM05823) and was independent of p53. The MEK1 inhibitor PD98059 prevented ERK activation but not p53 stabilization. Maximal ERK activation in response to DNA damage was not attenuated in MEF(p53-/-). However, ERK activation contributes to either cell cycle arrest or apoptosis in response to low or high intensity DNA insults, respectively. Inhibition of ERK activation by PD98059 or U0126 attenuated p21(CIP1) induction, resulting in partial release of the G(2)/M cell cycle arrest induced by ETOP. Furthermore, PD98059 or U0126 also strongly attenuated apoptosis induced by high dose ETOP, ADR, or UV. Conversely, enforced activation of ERK by overexpression of MEK-1/Q56P sensitized cells to DNA damage-induced apoptosis. Taken together, these results indicate that DNA damage activates parallel ERK and p53 pathways in an ATM-dependent manner. These pathways might function cooperatively in cell cycle arrest and apoptosis.  相似文献   

3.
Telomeres are complexes of repetitive DNA sequences and proteins constituting the ends of linear eukaryotic chromosomes. While these structures are thought to be associated with the nuclear matrix, they appear to be released from this matrix at the time when the cells exit from G(2) and enter M phase. Checkpoints maintain the order and fidelity of the eukaryotic cell cycle, and defects in checkpoints contribute to genetic instability and cancer. The 14-3-3sigma gene has been reported to be a checkpoint control gene, since it promotes G(2) arrest following DNA damage. Here we demonstrate that inactivation of this gene influences genome integrity and cell survival. Analyses of chromosomes at metaphase showed frequent losses of telomeric repeat sequences, enhanced frequencies of chromosome end-to-end associations, and terminal nonreciprocal translocations in 14-3-3sigma(-/-) cells. These phenotypes correlated with a reduction in the amount of G-strand overhangs at the telomeres and an altered nuclear matrix association of telomeres in these cells. Since the p53-mediated G(1) checkpoint is operative in these cells, the chromosomal aberrations observed occurred preferentially in G(2) after irradiation with gamma rays, corroborating the role of the 14-3-3sigma protein in G(2)/M progression. The results also indicate that even in untreated cycling cells, occasional chromosomal breaks or telomere-telomere fusions trigger a G(2) checkpoint arrest followed by repair of these aberrant chromosome structures before entering M phase. Since 14-3-3sigma(-/-) cells are defective in maintaining G(2) arrest, they enter M phase without repair of the aberrant chromosome structures and undergo cell death during mitosis. Thus, our studies provide evidence for the correlation among a dysfunctional G(2)/M checkpoint control, genomic instability, and loss of telomeres in mammalian cells.  相似文献   

4.
14-3-3 sigma, implicated in cell cycle arrest by p53, was cloned by expression cloning through cyclin-dependent kinase 2 (CDK2) association. 14-3-3 sigma shares cyclin-CDK2 binding motifs with different cell cycle regulators, including p107, p130, p21(CIP1), p27(KIP1), and p57(KIP2), and is associated with cyclin.CDK complexes in vitro and in vivo. Overexpression of 14-3-3 sigma obstructs cell cycle entry by inhibiting cyclin-CDK activity in many breast cancer cell lines. Overexpression of 14-3-3 sigma can also inhibit cell proliferation and prevent anchorage-independent growth of these cell lines. These findings define 14-3-3 sigma as a negative regulator of the cell cycle progression and suggest that it has an important function in preventing breast tumor cell growth.  相似文献   

5.
6.
Liu W  Dai Q  Lu N  Wei L  Ha J  Rong J  Mu R  You Q  Li Z  Guo Q 《Biochimie et biologie cellulaire》2011,89(3):287-298
We recently established that LYG-202, a new flavonoid with a piperazine substitution, exerts an anti-tumor effect in vivo and in vitro. In the present study, we demonstrate that LYG-202 induces G1/S phase arrest and apoptosis in human colorectal carcinoma HCT-116 cells. Data showed that the blockade of the cell cycle was associated with increased p21(WAF1/Cip1) and Rb levels and reduced expression of cyclin D1, cyclin E, and CDK4. Moreover, PARP cleavage, activation of caspase-3, caspase-8, and caspase-9, and an increased ratio of Bax/Bcl-2 were detected in LYG-202-induced apoptosis. Additionally, activation of p53 resulted in the up-regulation of its downstream targets PUMA and p21(WAF1/Cip1), as well as the down-regulation of its negative regulator MDM2, suggesting that the p53 pathway may play a crucial role in LYG-202-induced cell cycle arrest and apoptosis. Furthermore, siRNA knockdown of p53 attenuated the G1 cell cycle arrest and apoptosis induced by LYG-202, as the effects of LYG-202 on up-regulation of p21(WAF1/Cip1) and down-regulation of Bcl-2 and pro-caspase-3 were partly inhibited in p53 siRNA transfected cells compared with control siRNA transfected cells. Collectively, these data indicate that LYG-202 exerts its anti-tumor potency by activating the p53-p21 pathway for G1/S cell cycle arrest and apoptosis in colorectal cancer cells.  相似文献   

7.
Peptidylarginine deiminases (PADIs) convert peptidylarginine into citrulline via posttranslational modification. One member of the family, PADI4, plays an important role in immune cell differentiation and cell death. To elucidate the participation of PADI4 in haematopoietic cell death, we examine whether inducible overexpression of PADI4 enhances the apoptotic cell death. PADI4 reduced the viability in a dose- and time-dependent manner of human leukemia HL-60 cells and human acute T leukemia Jurkat cells. The apoptosis-inducing activities were determined by nuclear condensation, DNA fragmentation, sub-G1 appearance, loss of mitochondrial membrane potential (Δψm), release of mitochondrial cytochrome c into cytoplasm and proteolytic activation of caspase 9 and 3. Following PADI4 overexpression, cells arrest in G1 phase significantly before their entrance into apoptotic cell death. PADI4 increases tumor suppressor p53 and its downstream p21 to control cell cycle. In the detections of protein expression and kinase activity, all protein levels of cyclin-dependent kinases (CDKs) and cyclins are not reduced except cyclin D, however, CDK2 (G1 entry S phase) and CDK1 (G2 entry M phase) enzyme activities are inhibited by conditionally inducible PADI4. p53 also expands its other downstream Bax to induce cytochrome c release from mitochondria. According to these data, we suggest that PADI4 induces apoptosis mainly through cell cycle arrest and mitochondria-mediated pathway. Furthermore, p53 features in PADI4-induced apoptosis by increasing intracellular p21 to control cell cycle and by Bax accumulation to decline Bcl-2 function, destroy Δψm, release cytochrome c to cytoplasm and activate the caspase cascade.  相似文献   

8.
9.
10.
MCPH1, initially identified as an hTERT repressor, has recently been implicated in mediating DNA damage response and maintaining chromosome integrity. This study is to investigate its potential role in the onset of cervical cancer. In the study, decreased expression of MCPH1 was observed in 19 of 31 cases (61.3 %) at mRNA level and 44 of 63 cases (69.8 %) at protein level of cervical tumor tissues compared with the paired nontumor tissues. Reduced MCPH1 protein expression was significantly associated with high-tumor grade (1 vs. 3 P = 0.013; 2 vs. 3 P = 0.047). In addition to inhibit SiHa cell migration and invasion, the overexpression of MCPH1 inhibited cervical cancer cells growth through inducing S phase arrest and mitochondrial apoptosis. Further analysis demonstrated cyclinA2/CDK2, CDC25C-cyclinB/CDC2, and p53/p21 pathways were involved in the MCPH1 overexpression-induced S phase arrest. Moreover, the overexpression of MCPH1 activated mitochondrial apoptosis through regulating several apoptosis-related proteins such as p53, Bcl-2, Bax, cytochrome c, caspase-3, and PARP-1. Our findings indicate that downregulated MCPH1 correlates with tumor progression in cervical cancer, and MCPH1 has an important role in regulating cell growth through regulating the cell cycle and apoptosis. Thus, it may be a crucial tumor suppressor gene and a novel candidate therapeutic target for cervical cancer.  相似文献   

11.
We show that caspase-3 cleaves Cdc6 at D(290)/S and D(442)/G sites, producing p32-tCdc6 (truncated Cdc6) and p49-tCdc6, respectively, during etoposide- or tumor necrosis factor (TNF)-alpha-induced apoptosis. The expression of these tCdc6 proteins, p32- and p49-tCdc6, promotes etoposide-induced apoptosis. The expression of tCdc6 perturbs the loading of Mcm2 but not Orc2 onto chromatin and activates ataxia telangiectasia mutated (ATM) and ATM and Rad-3 related (ATR) kinase activities with kinetics similar to that of the phosphorylation of Chk1/2. The activation kinetics are consistent with elevated cellular levels of p53 and mitochondrial levels of Bax. The tCdc6-induced effects are all suppressed to control levels by expressing a Cdc6 mutant that cannot be cleaved by caspase-3 (Cdc6-UM). Cdc6-UM expression attenuates the TNF-alpha-induced activation of ATM and caspase-3 activities. When ATM or ATR is down-expressed by using the small interfering RNA technique, the TNF-alpha- or tCdc6-induced activation of caspase-3 activities is suppressed in the cells. These results suggest that tCdc6 proteins act as dominant-negative inhibitors of replication initiation and that they disrupt chromatin structure and/or induce DNA damage, leading to the activation of ATM/ATR kinase activation and p53-Bax-mediated apoptosis.  相似文献   

12.
Genistein is a major isoflavonoid in dietary soybean, commonly consumed in Asia. Genistein exerts inhibitory effects on the proliferation of various cancer cells and plays an important role in cancer prevention. However, the molecular and cellular mechanisms of genistein on human ovarian cancer cells are still little known. We show that exposure of human ovarian cancer HO-8910 cells to genistein induces DNA damage, and triggers G2/M phase arrest and apoptosis. Furthermore, we also found that checkpoint proteins ATM and ATR are phosphorylated and activated in the cells treated with genistein. It is also shown that genistein increases the phosphorylation and activation of Chk1 and Chk2, which results in the phosphorylation and inactivation of phosphatases Cdc25C and Cdc25A, and thereby the phosphorylation and inactivation of Cdc2 which arrests cells in G2/M phase. Moreover, genistein enhances the phosphorylation and activation of p53, while decreases the ratio of Bcl-2/Bax and Bcl-xL/Bax and the level of phosphorylated Akt, which result in cells undergoing apoptosis. These results demonstrate that genistein-activated ATM-Chk2-Cdc25 and ATR-Chk1-Cdc25 DNA damage checkpoint pathways can arrest ovarian cancer cells in G2/M phase, and induce apoptosis while the cellular DNA damage is too serious to be repaired. Thus, the antiproliferative, DNA damage-inducing and pro-apoptotic activities of genistein are probably responsible for its genotoxic effects on human ovarian cancer HO-8910 cells.  相似文献   

13.
p21(WAF1) appears to be a major determinant of the cell fate in response to anticancer therapy. It was shown previously that HCT116 human colon cancer cells growing in vitro enter a stable arrest upon DNA damage, whereas cells with a defective p21(WAF1) response undergo apoptosis. Here we report that the enhanced sensitivity of HCT116/p21(-/-) cells to chemotherapeutic drug-induced apoptosis correlates with an increased expression of p53 and a modification of their Bax/Bcl-2 ratio in favor of the pro-apoptotic protein Bax. Treatment of HCT116/p21(-/-) cells with daunomycin resulted in a reduction of the mitochondrial membrane potential and in activation of caspase-9, whereas no such changes were observed in HCT116/p21(+/+) cells, providing evidence that p21(WAF1) exerts an antagonistic effect on the mitochondrial pathway of apoptosis. Moreover, the role of p53 in activation of this pathway was demonstrated by the fact that inhibition of p53 activity by pifithrin-alpha reduced the sensitivity of HCT116/p21(-/-) cells to daunomycin-induced apoptosis and restored a Bax/Bcl-2 ratio similar to that observed in HCT116p21(+/+) cells. Enhancement of p53 expression after disruption of p21(WAF1) resulted from a stabilization of p53, which correlated with an increased expression of the tumor suppressor p14(ARF), an inhibitor of the ubiquitin ligase activity of Mdm2. In accordance with the role of p14(ARF) in p53 stabilization, overexpression of p14(ARF) in HCT116/p21(+/+) cells resulted in a strong increase in p53 activity. Our results identify a novel mechanism for the anti-apoptotic effect of p21(WAF1) consisting in maintenance of mitochondrial homeostasis that occurs in consequence of a negative control of p14(ARF) expression.  相似文献   

14.
Gonolobus condurango plant extract is used as an anticancer drug in some traditional systems of medicine including homeopathy, but it apparently lacks any scientific validation. Further, no detailed study is available to suggest whether condurango-glycoside-A (CGA), a major ingredient of condurango serves as a potent anticancer compound. Therefore, we investigated apoptosis-inducing ability of CGA against cervix carcinoma cells (HeLa). β-galactosidase-activity and DNA damage were critically studied at different time points; while induced DNA-damage was observed at 9–12th hours, senescence of cells appeared at a later stage (18th hour after CGA treatment), implicating thereby a possible role of DNA damage in inducing pre-mature cell senescence. Concurrently, the number of cells undergoing apoptosis increased along with increase in reactive oxygen species (ROS) generation. Expression of p53 was also up-regulated, indicating that apoptosis could have been mediated through p53 pathway. DCHFDA (4′,6-Diamidino-2-phenylindole dihydrochloride) assay, acridine orange/ethidium bromide staining and annexin V/PI assay results collectively confirmed that apoptosis was induced by increased ROS generation. Reduction in proliferation of cells was further evidenced by the cell cycle arrest at G0/G1 stage. Expression profiles of certain relevant genes and proteins like p53, Akt, Bcl-2, Bax, cytochrome c and caspase 3 also provided evidence of ROS mediated p53 up-regulation and further boost in Bax expression and followed by cytochrome c release and activation of caspase 3. Overall results suggest that CGA initiates ROS generation, promoting up-regulation of p53 expression, thus resulting in apoptosis and pre-mature senescence associated with DNA damage.  相似文献   

15.
Exposure of human HeLaS(3) cervix carcinoma cells to high doses of conventional cytostatic drugs, e.g. cisplatin (CP) strongly inhibits their proliferation. However, most cytostatic agents are genotoxic and may generate a secondary malignancy. Therefore, therapeutic strategy using alternative, not cytotoxic drugs would be beneficial. Inhibition of cyclin-dependent kinases (CDKs) by pharmacological inhibitors became recently a promising therapeutic option. Roscovitine (ROSC), a selective CDK inhibitor, efficiently targets human malignant cells. ROSC induces cell cycle arrest and apoptosis in human MCF-7 breast cancer cells. ROSC also activates p53 protein. Activation of p53 tumor suppressor protein is essential for induction of apoptosis in MCF-7 cells. Considering the fact that in HeLaS(3) cells wt p53 is inactivated by the action of HPV-encoded E6 oncoprotein, we addressed the question whether ROSC would be able to reactivate p53 protein in them. Their exposure to ROSC for 24 h induced cell cycle arrest at G(2)/M and reduced the number of viable cells. Unlike CP, ROSC in the used doses did not induce DNA damage and was not directly cytotoxic. Despite lack of detectable DNA lesions, ROSC activated wt p53 protein. The increase of p53 levels was attributable to the ROSC-mediated protein stabilization. Further analyses revealed that ROSC induced site-specific phosphorylation of p53 protein at Ser46. After longer exposure, ROSC induced apoptosis in HeLaS(3) cells. These results indicate that therapy of HeLaS(3) cells by ROSC could offer an advantage over that by CP due to its increased selectivity and markedly reduced risk of generation of a secondary cancer.  相似文献   

16.
The mechanisms of injury-induced apoptosis of neurons within the spinal cord are not understood. We used a model of peripheral nerve-spinal cord injury in the rat and mouse to induce motor neuron degeneration. In this animal model, unilateral avulsion of the sciatic nerve causes apoptosis of motor neurons. We tested the hypothesis that p53 and Bax regulate this neuronal apoptosis, and that DNA damage is an early upstream signal. Adult mice and rats received unilateral avulsions causing lumbar motor neurons to achieve endstage apoptosis at 7-14 days postlesion. This motor neuron apoptosis is blocked in bax(-/-) and p53(-/-) mice. Single-cell gel electrophoresis (comet assay), immunocytochemistry, and quantitative immunogold electron microscopy were used to measure molecular changes in motor neurons during the progression of apoptosis. Injured motor neurons accumulate single-strand breaks in DNA by 5 days. p53 accumulates in nuclei of motor neurons destined to undergo apoptosis. p53 is functionally activated by 4-5 days postlesion, as revealed by immunodetection of phosphorylated p53. Preapoptotically, Bax translocates to mitochondria, cytochrome c accumulates in the cytoplasm, and caspase-3 is activated. These results demonstrate that motor neuron apoptosis in the adult spinal cord is controlled by upstream mechanisms involving DNA damage and activation of p53 and downstream mechanisms involving upregulated Bax and cytochrome c and their translocation, accumulation of mitochondria, and activation of caspase-3. We conclude that adult motor neuron death after nerve avulsion is DNA damage-induced, p53- and Bax-dependent apoptosis.  相似文献   

17.
CY Lai  AC Tsai  MC Chen  LH Chang  HL Sun  YL Chang  CC Chen  CM Teng  SL Pan 《PloS one》2012,7(8):e42192
Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (-/-) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity.  相似文献   

18.
The tumor suppressor p53 is frequently mutated in human cancers. Upon activation it can induce cell cycle arrest or apoptosis. ASPP2 can specifically stimulate the apoptotic function of p53 but not cell cycle arrest, but the mechanism of enhancing the activation of pro-apoptotic genes over cell cycle arrest genes remains unknown. In this study, we analyzed the binding of 53BP2 (p53-binding protein 2, the C-terminal domain of ASPP2) to p53 core domain and various mutants using biophysical techniques. We found that several p53 core domain mutations (R181E, G245S, R249S, R273H) have different effects on the binding of DNA response elements and 53BP2. Further, we investigated the existence of a ternary complex consisting of 53BP2, p53, and DNA response elements to gain insight into the specific pro-apoptotic activation of p53. We found that binding of 53BP2 and DNA to p53 is mutually exclusive in the case of GADD45, p21, Bax, and PIG3. Both pro-apoptotic and non-apoptotic response elements were competed off p53 by 53BP2 with no indication of a ternary complex.  相似文献   

19.
20.
To examine the p53-mediated biological activities and signalling pathways, we generated stable transfectants of the p53-null IW32 murine erythroleukemia cells expressing the temperature-sensitive p53 mutant DNA, tsp53(val135). Two clones with different levels of p53 protein expression were selected for further characterization. At permissive temperature, clone 1-5 cells differentiated along the erythroid pathway, and clone 3-2 cells that produced greater levels (3.5-fold) of p53 underwent apoptosis. Apoptosis of 3-2 cells was accompanied by mitochondrial cytochrome c release and caspase activation as well as by cleavage of caspase substrates. Bax protein was induced to a similar extent in these clones by wild-type p53; expression of p21(Cip1/Waf1) and p27(Kip1) proteins was also increased. However, significantly lesser extent of induction for both CDK inhibitors was detected in the apoptotic 3-2 clone. The general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD.fmk) blocked the p53-induced apoptosis in 3-2 cells, with a concomitant elevation of p27(Kip1), suggesting that p27(Kip1) protein underwent caspase-dependent proteolysis in the apoptotic 3-2 cells. Together these results linked a pathway involving cytochrome c release, caspase activation and p27(Kip1) degradation to the p53-induced apoptosis in IW32 erythroleukemia cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号