首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patents of lectins with antiviral, antibacterial and antifungal applications were searched and reviewed. Lectins are proteins that reversibly bind to specific carbohydrates and have the potential for therapy of infectious diseases as biopharmaceuticals, biomedical tools or in drug design. Given the rising concerns over drug resistance and epidemics, our patent review aims to add information, open horizons and indicate our view of the future perspectives about the antimicrobial applications of lectins. Patents with publications until December 2020 were retrieved from Espacenet using defined search terms and Boolean operators. The documents were used to identify the geographical and temporal distribution of the patents, characterize their lectins, and classify and summarize their antiviral, antibiotic and antifungal applications. Lectins are promising antiviral agents against viruses with epidemics and drug resistance concerns. Mannose-binding lectins were the most suggested antiviral agents since glycans with mannose residues are commonly involved in viral entry mechanisms. They were also immobilized onto surfaces to trap viral particles and inhibit their spread and replication. Many patents described the extraction, isolation, amino acid and nucleotide sequences, and expression vectors of lectins with antibiotic and/or antifungal activities in terms of MIC and IC50 for in vitro assays. The inventions also included lectins as biological tools in nanosensors for antibiotics susceptibility tests, drug-delivery systems for the treatment of resistant bacteria, diagnostics of viral diseases and as a vaccine adjuvant. Although research and development of new medicines is highly expensive, antimicrobial lectins may be worth investments given the emergence of epidemics and drug resistance. For this purpose, less invasive routes should be developed as alternatives to the parenteral administration of biologics. While anti-glycan neutralizing antibodies are difficult to develop due to the low immunogenicity of carbohydrates, lectins can be produced more easily and have a broad-spectrum activity. Protein engineering technologies may make the antimicrobial applications of lectins more successful.  相似文献   

2.
A broad range of proteins bind high-mannose carbohydrates found on the surface of the envelope protein gp120 of the human immunodeficiency virus and thus interfere with the viral life cycle, providing a potential new way of controlling HIV infection. These proteins interact with the carbohydrate moieties in different ways. A group of them interacts as typical C-type lectins via a Ca2+ ion. Another group interacts with specific single, terminal sugars, without the help of a metal cation. A third group is involved in more intimate interactions, with multiple carbohydrate rings and no metal ion. Finally, there is a group of lectins for which the interaction mode has not yet been elucidated. This review summarizes, principally from a structural point of view, the current state of knowledge about these high-mannose binding proteins and their mode of sugar binding.  相似文献   

3.
Narla SN  Sun XL 《Biomacromolecules》2012,13(5):1675-1682
We report a chemoenzymatic synthesis of chain-end functionalized sialyllactose-containing glycopolymers with different linkages and their oriented immobilization for glycoarray and SPR-based glyco-biosensor applications. Specifically, O-cyanate chain-end functionalized sialyllactose-containing glycopolymers were synthesized by enzymatic α2,3- and α2,6-sialylation of a lactose-containing glycopolymer that was synthesized by cyanoxyl-mediated free radical polymerization. (1)H NMR showed almost quantitative α2,3- and α2,6-sialylation. The O-cyanate chain-end functionalized sialyllactose-containing glycopolymers were printed onto amine-functionalized glass slides via isourea bond formation for glycoarray formation. Specific protein binding activity of the arrays was confirmed with α2,3- and α2,6-sialyl specific binding lectins together with inhibition assays. Further, immobilizing O-cyanate chain-end functionalized sialyllactose-containing glycopolymers onto amine-modified SPR chip via isourea bond formation afforded SPR-based glyco-biosensor, which showed specific binding activity for lectins and influenza viral hemagglutinins (HA). These sialyloligo-macroligand derived glycoarray and SPR-based glyco-biosensor are closely to mimic 3D nature presentation of sialyloligosaccharides and will provide important high-throughput tools for virus diagnosis and potential antiviral drug candidates screening applications.  相似文献   

4.
Mushroom lectins: Current status and future perspectives   总被引:1,自引:0,他引:1  
Lectins are nonimmune proteins or glycoproteins that bind specifically to cell surface carbohydrates, culminating in cell agglutination. These are known to play key roles in host defense system and also in metastasis. Many new sources have been explored for the occurrence of lectins during the last few years. Numerous novel lectins with unique specificities and exploitable properties have been discovered. Mushrooms have attracted a number of researchers in food and pharmaceuticals. Many species have long been used in traditional Chinese medicines or functional foods in Japan and other Asian countries. A number of bioactive constituents have been isolated from mushrooms including polysaccharides, polysaccharopeptides, polysaccharide–protein complexes, proteases, ribonucleases, ribosome inactivating proteins, antifungal proteins, immunomodulatory proteins, enzymes, lectins, etc. Mushroom lectins are endowed with mitogenic, antiproliferative, antitumor, antiviral, and immunestimulating potential. In this review, an attempt has been made to collate the information on mushroom lectins, their blood group and sugar specificities, with an emphasis on their biomedical potential and future perspectives.  相似文献   

5.
Animal lectins: a historical introduction and overview   总被引:20,自引:0,他引:20  
Some proteins we now regard as animal lectins were discovered before plant lectins, though many were not recognised as carbohydrate-binding proteins for many years after first being reported. As recently as 1988, most animal lectins were thought to belong to one of two primary structural families, the C-type and S-type (presently known as galectins) lectins. However, it is now clear that animal lectin activity is found in association with an astonishing diversity of primary structures. At least 12 structural families are known to exist, while many other lectins have structures apparently unique amongst carbohydrate-binding proteins, although some of those "orphans" belong to recognised protein families that are otherwise not associated with sugar recognition. Furthermore, many animal lectins also bind structures other than carbohydrates via protein-protein, protein-lipid or protein-nucleic acid interactions. While animal lectins undoubtedly fulfil a variety of functions, many could be considered in general terms to be recognition molecules within the immune system. More specifically, lectins have been implicated in direct first-line defence against pathogens, cell trafficking, immune regulation and prevention of autoimmunity.  相似文献   

6.
Entry of enveloped viruses into host cells depends on the interactions of viral surface proteins with cell surface receptors. Many enveloped viruses maximize the efficiency of receptor engagement by first binding to attachment‐promoting factors, which concentrate virions on target cells and thus increase the likelihood of subsequent receptor engagement. Cellular lectins can recognize glycans on viral surface proteins and mediate viral uptake into immune cells for subsequent antigen presentation. Paradoxically, many viral and non‐viral pathogens target lectins to attach to immune cells and to subvert cellular functions to promote their spread. Thus, it has been proposed that attachment of HIV to the dendritic cell lectin DC‐SIGN enables the virus to hijack cellular transport processes to ensure its transmission to adjacent T cells. However, recent studies show that the consequences of viral capture by immune cell lectins can be diverse, and can entail negative and positive regulation of viral spread. Here, we will describe key concepts proposed for the role of lectins in HIV attachment to host cells, and we will discuss recent findings in this rapidly evolving area of research.  相似文献   

7.
Gene therapy has emerged as one of the most promising therapeutic methods to treat various diseases. However, inadequate gene transfection efficacy during gene therapy demands further development of more efficient gene delivery strategies. Targeting genetic material to specific sites of action endows numerous advantages over non-targeted delivery. An ample variety of non-viral gene delivery vectors have been developed in recent years owing to the safety issues raised by viral vectors. Non-viral gene delivery vectors containing specific targeting ligands on their surfaces have been reported to enhance the gene transfection efficiency via receptor-mediated endocytosis for gene delivery. Among various targeting moieties investigated, carbohydrates and lectins (carbohydrate-binding proteins) played an essential role in gene delivery via either direct or reverse lectin targeting strategies. Lectins have a specific carbohydrate binding domain that can bind specifically to the carbohydrates. This review sheds light on various gene delivery nanovectors conjugated with either lectins or carbohydrates for enhanced gene transfection.  相似文献   

8.
干扰素诱导的鱼类Mx蛋白   总被引:2,自引:0,他引:2  
Mx蛋白是干扰素诱导表达的蛋白家族中的成员,当机体和细胞受病毒感染或诱生剂处理时产生。Mx蛋白和其它干扰素诱导蛋白一起构成宿主细胞的抗病毒状态,以达到抗病毒的目的。研究表明,Mx蛋白具有抗病毒活性,还可能与其它基本生命活动如发育或分化,蛋白质分送和生长有关。在鱼类也发现多种Mx蛋白,具有Mx蛋白家族的共有特征;在肽链末端有一个三联ATP/GTP结合区和发动蛋白家族的结构特征序列;在蛋白C端存在使Mx蛋白形成三聚体的Leu拉链结构以及定位信号。但是迄今没有发现鱼类Mx蛋白的抗病毒活性。文章最后对目前鱼类病毒病的防治及利用抗病毒基因进行鱼类基因工程抗病毒育种进行了探讨。  相似文献   

9.
Crystal structures of complexes of an antiviral lectin griffithsin (GRFT) with glucose and N-acetylglucosamine were solved and refined at high resolution. In both complexes, all six monosaccharide-binding sites of GRFT were occupied and the mode of binding was similar to that of mannose. In our previous attempts to obtain a complex with N-acetylglucosamine by soaking, only a single site was occupied; thus, cocrystallization was clearly superior despite lower concentration of the ligand. Isothermal titration calorimetric experiments with N-acetylglucosamine, glucose, and mannose provided enthalpic evidence of distinct binding differences between the three monosaccharides. A comparison of the mode of binding of different monosaccharides is discussed in the context of the antiviral activity of GRFT, based on specific binding to high-mannose-containing complex carbohydrates found on viral envelopes.  相似文献   

10.
Lectins are widespread in nature and have been isolated from plants, animals, microorganisms, and viruses. Although several lectins have been reported from microfungi, many more genera still remain unexplored and their physiological role is also uncertain. Microfungal lectins show wide disparity regarding their specificity to erythrocytes. Only a few lectins display specificity to particular human blood types. In addition, they also show agglutination to various animal erythrocytes. Many lectins from microfungi exhibit stringent specificity to animal glycoproteins, while a few have much more simplified sugar binding properties. The role of few microfungal lectins in host-parasite interactions, as storage proteins, and in growth and morphogenesis has been proposed. The current review focuses on an overview of lectins from microfungi, their specificity towards erythrocytes and carbohydrates, physicochemical characteristics, and their possible role and applications.  相似文献   

11.
Lectins are widespread in nature and have been isolated from plants, animals, microorganisms, and viruses. Although several lectins have been reported from microfungi, many more genera still remain unexplored and their physiological role is also uncertain. Microfungal lectins show wide disparity regarding their specificity to erythrocytes. Only a few lectins display specificity to particular human blood types. In addition, they also show agglutination to various animal erythrocytes. Many lectins from microfungi exhibit stringent specificity to animal glycoproteins, while a few have much more simplified sugar binding properties. The role of few microfungal lectins in host-parasite interactions, as storage proteins, and in growth and morphogenesis has been proposed. The current review focuses on an overview of lectins from microfungi, their specificity towards erythrocytes and carbohydrates, physicochemical characteristics, and their possible role and applications.  相似文献   

12.
Lectins are proteins or glycoproteins of non-immune origin which bind reversibly to carbohydrates that are exposed on cellular surfaces and mediate cellular recognition processes in a variety of biological interactions. Though initially discovered in plants, lectins from various sources including lichens, have been extensively studied by researchers all over the world. The symbiotic interaction between a fungus (mycobiont) and its photosynthetic partner (photobiont), usually an alga, constitutes a lichen. Some lichen lectins displays activity to human or animal erythrocytes. Although only a few lichen lectins have been examined to date, their characteristics suggest that they play an important role in the symbiotic interactions of this association. Lectin binding and the related enzymatic activity with respect to algal cell recognition illustrates a finely tuned mechanistic system which involved in the lichen symbiosis. This review provides an overview of the characteristics of lichen lectins and an insight into lectin-mediated symbiotic interactions and the galectin encoding genes. Future prospects for lichen lectin research in different areas are also highlighted.  相似文献   

13.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelope (Env) proteins are extensively decorated with N-glycans, predominantly of the high-mannose type. However, it is unclear how high-mannose N-glycans on Env impact viral spread. We show that exclusive modification of SIV Env with these N-glycans reduces viral infectivity and abrogates mucosal transmission, despite increasing viral capture by immune cell lectins. Thus, high-mannose N-glycans have opposed effects on SIV infectivity and lectin reactivity, and a balance might be required for efficient mucosal transmission.  相似文献   

14.
A major component of the protective antiviral host defense is contributed by the intracellular actions of the proteins encoded by interferon-stimulated genes (ISGs); among these are the interferon-induced proteins with tetratricopeptide repeats (IFITs), consisting of four members in human and three in mouse. IFIT proteins do not have any known enzyme activity. Instead, they inhibit virus replication by binding and regulating the functions of cellular and viral proteins and RNAs. Although all IFITs are comprised of multiple copies of the degenerate tetratricopeptide repeats, their distinct tertiary structures enable them to bind different partners and affect host-virus interactions differently. The recent use of Ifit knockout mouse models has revealed novel antiviral functions of these proteins and new insights into the specificities of ISG actions. This article focuses on human and murine IFIT1 and IFIT2 by reviewing their mechanisms of action, their critical roles in protecting mice from viral pathogenesis, and viral strategies to evade IFIT action.  相似文献   

15.
Microvirin (MVN), a recently isolated lectin from the cyanobacterium Microcystis aeruginosa PCC7806, shares 33% identity with the potent anti-human immunodeficiency virus (HIV) protein cyanovirin-N (CV-N) isolated from Nostoc ellipsosporum, and both lectins bind to similar carbohydrate structures. MVN is able to inhibit infection by a wide variety of HIV-1 laboratory-adapted strains and clinical isolates of different tropisms and subtypes in peripheral blood mononuclear cells. MVN also inhibits syncytium formation between persistently HIV-1-infected T cells and uninfected CD4+ T cells and inhibits DC-SIGN-mediated HIV-1 binding and transmission to CD4+ T cells. Long term passaging of HIV-1 exposed to dose-escalating concentrations of MVN resulted in the selection of a mutant virus with four deleted high mannose-type glycans in the envelope gp120. The MVN-resistant virus was still highly sensitive to various other carbohydrate binding lectins (e.g. CV-N, HHA, GNA, and UDA) but not anymore to the carbohydrate-specific 2G12 monoclonal antibody. Importantly, MVN is more than 50-fold less cytotoxic than CV-N. Also in sharp contrast to CV-N, MVN did not increase the level of the activation markers CD25, CD69, and HLA-DR in CD4+ T lymphocytes, and subsequently, MVN did not enhance viral replication in pretreated peripheral blood mononuclear cells. Therefore, MVN may qualify as a useful lectin for potential microbicidal use based on its broad and potent antiviral activity and virtual lack of any stimulatory properties and cellular toxicity.  相似文献   

16.
Disease outbreaks caused by viral pathogens constitute a major limitation to development of the shrimp aquaculture industry. Many research have been conducted to better understand how host shrimp respond to viral infections with the aim of using the gained knowledge to develop better strategies for disease management and control. One approach has been to study the interactions between host and viral proteins, and particularly host virus-binding proteins that might play an important role in the viral infection process. Within the past five years, increasing numbers of virus-binding proteins (VBPs) have been reported in shrimp. Characterization of these molecules has emphasized on their potential therapeutic applications by demonstrating their activities in inhibition of viral replication via in vivo neutralization assay. However, signaling to induce innate antiviral immune responses as a consequence of binding between viral proteins and VBPs remain to be fully elucidated.  相似文献   

17.
李兰  郑其升  侯继波 《微生物学报》2019,59(10):1872-1879
来源于海洋红藻的凝集素G已被证实对多种囊膜病毒都有抗病毒活性,可与囊膜病毒表面糖基结合而阻断病毒的入侵。以病毒入侵为作用靶点的抗病毒药物,不仅可以阻断病毒的自由传播途径,还可以阻断细胞间传播途径,红藻凝集素G还具有可溶性好、易表达、稳定性强、免疫原性低、安全性好等优点,所以红藻凝集素G作为一类新型抗病毒药物越来越受到科学家的青睐。  相似文献   

18.
Collectins are multimeric host defence lectins with trimeric CRDs (carbohydrate-recognition domains) and collagen and N-terminal domains that form higher-order structures composed of four or more trimers. Recombinant trimers composed of only the CRD and adjacent neck domain (termed NCRD) retain binding activity for some ligands and mediate some functional activities. The lung collectin SP-D (surfactant protein D) has strong neutralizing activity for IAVs (influenza A viruses) in vitro and in vivo, however, the NCRD derived from SP-D has weak viral-binding ability and lacks neutralizing activity. Using a panel of mAbs (monoclonal antibodies) directed against the NCRD in the present study we show that mAbs binding near the lectin site inhibit antiviral activity of full-length SP-D, but mAbs which bind other sites on the CRD do not. Two of the non-blocking mAbs significantly increased binding and antiviral activity of NCRDs as assessed by haemagglutination and neuraminidase inhibition and by viral neutralization. mAb-mediated cross-linking also enabled NCRDs to induce viral aggregation and to increase viral uptake by neutrophils and virus-induced respiratory burst responses by these cells. These results show that antiviral activities of SP-D can be reproduced without the N-terminal and collagen domains and that cross-linking of NCRDs is essential for antiviral activity of SP-D with respect to IAV.  相似文献   

19.
Dendritic cells (DCs) act as a portal for virus invasion and as the most potent antigen-presenting cells in antiviral host defense. Human immunodeficiency virus (HIV)-1 has served as the paradigm for virus interaction with DCs. HIV-1 infection of DCs via its primary CD4 receptor and secondary chemokine receptors leads to full virus replication (cis infection), whereas binding to C-type lectin receptors results both in cis replication, as well as transfer and replication of virus in CD4(pos) T cells (trans infection). DCs respond to this invasion by processing viral proteins through MHC class I and II pathways and undergoing a maturation that enhances their presentation of antigen to T cells for induction of adaptive antiviral immunity. HIV-1 and other viruses have evolved mechanisms to subvert this immune function. Engineering of DCs with various forms of viral immunogens and co-treatment with cytokines and chemokines is being used as an immunotherapy for HIV-1 and other viral infections.  相似文献   

20.
Carbohydrate-functionalized chitosan fiber for influenza virus capture   总被引:1,自引:0,他引:1  
Li X  Wu P  Gao GF  Cheng S 《Biomacromolecules》2011,12(11):3962-3969
The high transmissibility and genetic variability of the influenza virus have made the design of effective approaches to control the infection particularly challenging. The virus surface hemagglutinin (HA) protein is responsible for the viral attachment to the host cell surface via the binding with its glycoligands, such as sialyllactose (SL), and thereby is an attractive target for antiviral designs. Herein we present the facile construction and development of two SL-incorporated chitosan-based materials, either as a water-soluble polymer or as a functional fiber, to demonstrate their abilities for viral adhesion inhibition and decontamination. The syntheses were accomplished by grafting a lactoside bearing an aldehyde-functionalized aglycone to the amino groups of chitosan or chitosan fiber followed by the enzymatic sialylation with sialyltransferase. The obtained water-soluble SL-chitosan conjugate bound HA with high affinity and inhibited effectively the viral attachment to host erythrocytes. Moreover, the SL-functionalized chitosan fiber efficiently removed the virus from an aqueous medium. The results collectively demonstrate that these potential new materials may function as the virus adsorbents for prevention and control of influenza. Importantly, these materials represent an appealing approach for presenting a protein ligand on a chitosan backbone, which is a versatile molecular platform for biofunctionalization and, thereby, can be used for not only antiviral designs, but also extensive medical development such as diagnosis and drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号