首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A purification procedure to obtain RNA polymerases I (or A) and II (or B) from Dictyostelium discoideum amoeba has been developed. The enzymes were solubilized from purified nuclei and separated by DEAF-Sephadex chromatography. RNA polymerases I and II were further purified by a second chromatography on DEAE-Sephadex followed by chromatographies on phosphocellulose and heparin-sepharose. The specific activities of purified RNA polymerases I and II are 92 units/ mg protein and 70 units/ mg protein, respectively. The subunit structure of both RNA polymerases were analyzed by polyacrylamide gel electrophoresis under denaturing conditions after glycerol gradient centrifugation of the enzymes. The putative subunits of RNA polymerase I have molecular weights of 180 000,125 000,43 000,40 000,34 000, 31 000, 25 000,19 000, 17 000 and 14 000. The putative subunits of RNA polymerase II have molecular weights of 200 000 (170 000), 130 000, 33 000, 25 000, 19 000, 17 000, 15 000, 13 000. There are three polypeptides with common molecular weight in Dictyostelium RNA polymerases I and 11. The subunit of 25 000 daltons of both enzymes has common immunological determinants with RNA polymerase II from crustacean Artemia.Abbreviations TLCK tosyl-lysine-chloromethyl-ketone - DPT diazophenylthioether  相似文献   

2.
The administration of 3-methylcholanthrene (MC) to rats results in a marked increase in the specific activities of hepatic RNA polymerases I and II. In the present study, we were able to show that this increase was not caused by a shift in the ratio of ‘free’ to ‘template-engaged’ RNA polymerase. By means of binding studies with [3H]amatoxin, we were unable to demonstrate any increase in the number of RNA polymerase II molecules in liver after MC administration to the rats. RNA polymerase I was purified in excess of 3000-fold from hepatic nuclei isolated both from control and MC-treated rats. The stimulation in activity was demonstrated at each step in the purification scheme until glycerol sedimentation analysis. Results from cation-exchange chromatography on phosphocellulose indicated that the polycyclic hydrocarbon increased the enzyme activity of RNA polymerase Ib somewhat specifically. Subsequent to glycerol gradient centrifugation, this stimulatory advantage was no longer evident. Reconstitution experiments revealed the presence of a stimulatory component, which was demonstrated in low molecular weight fractions from both control and experimental preparations.  相似文献   

3.
A RNA dependent-DNA polymerase was purified about 450-fold from the soluble fraction of calf thymus. This enzyme was able to copy the polyribonucleic acid strand of synthetic ribonucleic acid primed with complementary oligodeoxynucleotides, i.e., poly(rA)·(dT)10. This enzyme activity was separated from the DNA-dependent DNA polymerases by both DEAE-cellulose columm chromatography and glycerol gradient centrifugation. Some properties of this enzyme were described.  相似文献   

4.
DNA polymerase was purified from Drosophila melanogaster embryos by a combination of phosphocellulose adsorption, Sepharose 6B gel filtration, and DEAE-cellulose chromatography. Three enzyme forms, designated enzymes I, II, and III, were separated by differential elution from DEAE-cellulose and were further purified by glycerol gradient centrifugation. Purification was monitored with two synthetic primer-templates, poly(dA) . (dT)-16 and poly(rA) . (dT)-16. At the final step of purification, enzymes I, II, and III were purified approximately 1700-fold, 2000-fold and 1000-fold, respectively, on the basis of their activities with poly(dA) . (dT)-16. The DNA polymerase eluted heterogeneously as anomalously high-molecular-weight molecules from Sepharose 6B gel filtration columns. On DEAE-cellulose chromatography enzymes I and II eluted as distinct peaks and enzyme III eluted heterogeneously. On glycerol velocity gradients enzyme I sedimented at 5.5-7.3 S, enzyme II sedimented at 7.3-8.3 S, and enzyme III sedimented at 7.3-9.0 S. All enzymes were active with both synthetic primer-templates, except the 9.0 S component of enzyme III, which was inactive with poly(rA) . (dT)-16. Non-denaturing polyacrylamide gel electrophoresis did not separate poly(dA) . (dT)-16 activity from poly(rA) . (dT)-16 activity. The DNA polymerase preferred poly(dA) . (dT)-16 (with Mg2+) as a primer-template, although it was also active with poly(rA) . (dT)-16 (with Mn2+), and it preferred activated calf thymus DNA to native or heat-denatured calf thymus DNA. All three primer-template activities were inhibited by N-ethylmaleimide. Enzyme activity with activated DNA and poly(dA) . (dT)-16 was inhibited by K+ and activity with poly(rA) . (dT)-16 was stimulated by K+ and by spermidine. The optimum pH for enzyme activity with the synthetic primer-templates was 8.5. The DNA polymerases did not exhibit deoxyribonuclease or ATPase activities. The results of this study suggest that the forms of DNA polymerase from Drosophila embryos have physical properties similar to those of DNA polymerase-alpha and enzymatic properties similar to those of all three vertebrate DNA polymerases.  相似文献   

5.
6.
A procedure is described for the purification of the alpha-amanitin-sensitive DNA-dependent RNA polymerase [EC 2.7.7.6] from wheat germ. Solubilization of the enzyme activity was achieved by sonication of a crude extract in a high-salt buffer. Purification involved precipitation with protamine sulphate and (NH(4))(2)SO(4), chromatography on DEAE-cellulose and phosphocellulose, and sucrose gradient centrifugation. Under denaturing conditions the enzyme dissociated into five polypeptides with molecular weights and molar ratios of 220000 (0.9), 170000 (0.1), 140000 (1.0), 45000 (0.2), and 40000 (0.4). Approx. 1mg of purified RNA polymerase was obtained as a routine from 100g of starting material.  相似文献   

7.
A DNA-dependent ATPase formed after T4 phage infection is purified to apparent homogeneity. The molecular weight of the purified enzyme is 50 000 when determined by glycerol gradient centrifugation and by sodium dodecylsulfate/polyacrylamide gel electrophoresis. The enzyme at an earlier stage in purification (prior to DEAE-cellulose chromatography) exists as a complex with a molecular weight of 100000. However, molecular weight determinations by Sephadex gel chromatography give considerably decreased molecular weights for the complex and for the enzyme after DEAE-cellulose chromatography. The enzyme is stimulated to varying degrees by a variety of single-stranded polydeoxyribonucleotides or by single-stranded DNA, but no chemical change in the polynucleotide has been detected as a result of the enzyme action.  相似文献   

8.
Characterization of purified DNA-dependent RNA polymerase (EC 2.7.7.6) of Caulobacter crescentus, strain CB15 has led to the conclusion that this enzyme catalyzes poly(A) synthesis in the absence of template. Poly(A) synthetase activity co-purifies with both holoenzyme and core polymerase on DNA-cellulose columns, and core polymerase purified to 98% homogeneity by glycerol gradient centrifugation is still capable of catalyzing poly(A) polymerization. Both RNA synthesis and poly(A) polymerization activities are sensitive to rifampicin. In addition, RNA polymerase purified from partially rifampicin-sensitive mutants exhibits the same partial sensitivity in vitro to the drug in the synthesis of RNA and poly(A). The enzyme used in these studies was prepared by a simple method which allows a high yield of pure RNA polymerase from large batches of exponential cells. The procedure includes high speed centrifugation of cell extracts, DEAE-cellulose column, DNA-affinity chromatography, and low salt glycerol gradient centrifugation. Holoenzyme can be resolved into core and sigma subunit by either DNA-cellulose chromatography or glycerol gradient centrifugation, and the latter step allows recovery of pure sigma factor.  相似文献   

9.
The RNA-directed DNA polymerase of murine mammary tumor virus, a type B RNA tumor virus, was purified sequentially through DEAE-cellulose, phosphocellulose (step gradient), and phosphocellulose (linear salt gradient) chromatography followed by glycerol sedimentation centrifugation. During all stages of purification, coincident peaks of RNA-directed DNA polymerase activity, templated by polyribocytidylate-oligodeoxyguanidylate, and RNase H digestion of [3H]polyriboadenylate-polydeoxythymidylate were observed, and both enzymatic activities displayed a cation preference for magnesium. Under conditions that removed adventitiously associated nucleases, RNase H activity was found to co-purify with polymerase. The specificity of this nuclease was assayed with various prepared substrates, which indicated that the polymerase-associated RNase H activity was directed only against the RNA strand of an RNA-DNA hybrid. It is highly probable that RNase H (RNA-DNA hybrid: ribonucleotide-hydrolase, EC 3.1.4..34) and RNA-directed DNA polymerase of type B viruses are associated enzymatic activities analogous to those observed for avian and mammalian type C RNA tumor viruses.  相似文献   

10.
DNA-dependent RNA polymerases were solubilized from nuclei of cauliflower inflorescences and purified by agarose A-1.5m, DEAE-cellulose, DEAE-Sephadex, and phosphocellulose chromatography and sucrose density gradient centrifugation. RNA polymerases I + III were separated from II by DEAE-cellulose chromatography. Subsequent chromatography on DEAE-Sephadex resolved RNA polymerase I from III. RNA polymerases I and II were further purified to high specific activity by phosphocellulose chromatography and sucrose density gradient centrifugation. RNA polymerase I was refractory to α-amanitin at 2 mg/ml. RNA polymerase II was 50% inhibited at 0.05 μg/ml, and RNA polymerase III was 50% inhibited at 1 to 2 mg/ml of α-amanitin. The enzymes were characterized with respect to divalent cation optima, ionic strength optima, and abilities to transcribe cauliflower, synthetic, and cauliflower mosaic virus DNA templates.  相似文献   

11.
Diacylglycerol:ATP kinase(EC 2.3.1.-) was highly purified (more than 2000-fold) from rat liver cytosol. The specific activity of the obtained enzyme was about 1.5 μmol phosphatidate formed/mg of protein/min. The purification procedures included ammonium sulfate fractionation, DEAE-cellulose chromatography, gel filtration on Sephadex G-200, and finally affinity chromatography on ATP-agarose. The activities of diacylglycerol:GTP kinase and monoacylglycerol:ATP kinase were copurified throughout the procedures, forming a single peak together with diacylglycerol: ATP kinase. Furthermore, these kinase activities showed a single peak when the highly purified enzyme was analyzed by a sucrose density gradient centrifugation and polyacrylamide gel electrophoresis. The three kinase activities are, therefore, most likely catalyzed by a single enzyme. The kinase showed an apparent molecular weight of 121,000 on gel filtration and sedimented at 5.1 S in a sucrose gradient centrifugation. The apparent Km values were 170 μm for ATP, 540 μm for GTP, and 3.0 μm for diacylglycerol. A number of nucleoside triphosphates and diphosphates competitively inhibited the kinase, in particular the activity utilizing GTP. Among the nucleotides tested, ADP was the most potent inhibitor (the apparent Ki:50 μm for diacylglycerol:ATP kinase and 42 μm for diacylglycerol:GTP kinase). The kinase required Mg2+ and deoxycholate for its activity, and the optimal pH was 8.0–8.5. No dependence on added phospholipids was observed.  相似文献   

12.
《Experimental mycology》1981,5(3):193-208
The DNA-dependent RNA polymerase II or B (ribonucleotide-triphosphate: RNA nucleotidyl transferase, EC 2.7.7.6) from the Oomycete fungusAchlya ambisexualis has been purified to apparent homogeneity. The purification procedures involve precipitation with polyethylenimine, selective elution of RNA polymerase from the polyethyleneimine precipitate, ammonium sulfate fractionation, DEAE-cellulose chromatography, CM-cellulose chromatography, and chromatography on DNA-Sepharose 4B affinity columns. Utilizing these procedures 3 mg of RNA polymerase II is recovered from 1.6 kg of mycelium (wet weight). Purified RNA polymerase II fromA. ambisexualis was half-maximally inhibited by the mushroom toxin α-amanitin at a concentration of 0.046 μg/ml (5 × 10−8m). A second RNA polymerase activity is half-maximally inhibited at 55.6 μg/ml (6 × 10−5m). RNA polymerase II fromAchlya has 13 subunits with the following molecular weights: 180,000; 140,000; 99,000; 89,000; 69,000; 53,000; 41,000; 35,000; 29,000; 25,000; 19,000; 16,500; and 14,000. With regard to template preference, salt optima, and divalent metal cation optima,Achlya RNA polymerase is quite typical of other eucaryotic RNA polymerases.  相似文献   

13.
A rapid and simple, large-scale method for the purification of DNA-dependent RNA polymerase III (EC 2.7.7.6) from wheat germ is presented. The method involves enzyme extraction at low ionic strength, polyethyleneimine fractionation, (NH4)2SO4 precipitation, and chromatography on DEAE-Sepharose CL-6B, DEAE-cellulose, and heparin agarose. Milligram quantities of highly purified enzyme can be obtained from kilogram quantities of starting material in 2 to 3 days. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that RNA polymerase III contains 14 subunits with molecular weights of: 150,000; 130,000; 94,000; 55,000; 38,000; 30,000; 28,000; 25,000; 24,500; 20,500; 20,000; 19,500; 17,800; and 17,000. Subunit structure comparison of wheat germ RNA polymerases I, II, and III indicates that all three enzymes may contain common subunits with molecular weights 20,000, 17,800, and 17,000. In addition, RNA polymerases II and III may contain a common subunit with a molecular weight of 25,000, and RNA polymerases I and III may contain a common subunit with a molecular weight of 38,000.  相似文献   

14.
DNA-dependent RNA polymerase B has been extensively purified from the larval fat body of the tobacco hornworm (Manduca sexta) by employing chromatography on ion-exchange columns of DEAE-Sephadex, DEAE-cellulose and phosphocellulose and centrifugation on glycerol gradients. The isolated enzyme after electrophoresis on acrylamide gels shows one main band and one minor band, both having enzyme activity sensitive to alpha-amanitin. The catalytic and physicochemical properties of the enzyme are similar to those of other eucaryotic B-type RNA polymerases. The enzyme has an apparent molecular weight of 530000, is inhibited 50% by alpha-amanitin at 0.04 microgram/ml and shows maximum activity on denatured DNA at 5 mM Mn2+ and 100 mM ammonium sulfate. An antibody was obtained that cross-reacts with the pure enzyme and forms a precipitin line. This antibody does not cross react with either Escherichia coli RNA polymerase or with wheat germ RNA polymerase but does react with one of the B polymerases isolated from wing tissue of the silkmoth, Antheraea pernyi.  相似文献   

15.
Ribonucleic acids having template activities were obtained from particulate components prepared from the postribosomal supernatant of soybean seeds. These RNA were 9 S and 18 S in size, and these corresponded to the components (9 S, 18 S) of high molecular weight RNA (H–RNA) prepared from the supernatant of 100,000×g centrifugation. The sizes of the particulate components were 37 S and 59 S, respectively. Larger particles contained 18 S and 9S RNA, and smaller particles contained 9S RNA, but not 18 S RNA. Those particulate components differed in absorption pattern and in the behaviour on sucrose gradient centrifugation depending on the concentration of Mg27+ from the subunits of ribosomes.  相似文献   

16.
We have purified and characterized a DNA-dependent RNA polymerase from the blue-green alga Fremyella diplosiphon. This enzyme, purified by gel filtration, DEAE-cellulose chromatography, and glycerol gradient centrifugation, is comprised of five polypeptide subunits. Their masses are 161,000, 134,000, 91,000, 72,000, and 41,000 daltons. Preparative electrophoresis of the purified enzyme on nondenaturing gels separates the 41,000-dalton polypeptide from the rest of the enzyme. The enzyme is extremely labile in the presence of a variety of salts of strong acids and bases; the purification procedure was devised to avoid exposure to such compounds.  相似文献   

17.
Brain microtubules purified by cycles of assembly and disassembly contained an ATPase activity in the fraction of microtubule-associated proteins (MAPs). This ATPase activity was found to be stimulated by 6S tubulin in the presence of Ca2+ ions, suggesting its functional association with brain microtubules (Ihara et al. (1979) J. Biochem. 86, 587-590). On further purification by DEAE-cellulose column chromatography, two peaks of ATPase activity were separated; one, eluted at 0.2 M KCl (ATPase I), was dependent on added 6S tubulin but the other, eluted at 0.5 M KCl (ATPase II), was not. ATPase I was highly unstable but could be stabilized by the addition of 0.1 mM ADP, 50% (v/v) glycerol or 0.3 mg/ml tubulin. ATPase I was further purified by CM-cellulose column chromatography, and by gel filtration on Sephacryl S-300. Its molecular weight, estimated by gel filtration, was 33,000. ATPase II had a high molecular weight and appeared to be associated with membrane vesicles. It sedimented on glycerol density gradient centrifugation with an s value of 27S. It was purified by high speed sedimentation and hydrophobic chromatography, and was observed under an electron microscope to consist of membrane vesicles of about 70 nm in diameter containing knob-like structures similar to those of H+-pump ATPase.  相似文献   

18.
Rapid enrichment of CHAPS-solubilized UDP-glucose:(1,3)-β-glucan (callose) synthase from storage tissue of red beet (Beta vulgaris L.) is obtained when the preparation is incubated with an enzyme assay mixture, then centrifuged and the enzyme released from the callose pellet with a buffer containing EDTA and CHAPS (20-fold purification relative to microsomes). When centrifuged at high speed (80,000g), the enzyme can also be pelleted in the absence of substrate (UDP-Glc) or synthesis of callose, due to nonspecific aggregation of proteins caused by excess cations and insufficient detergent in the assay buffer. True time-dependent and substrate-dependent product-entrapment of callose synthase is obtained by low-speed centrifugation (7,000-11,000g) of enzyme incubated in reaction mixtures containing low levels of cations (0.5 millimolar Mg2+, 1 millimolar Ca2+) and sufficient detergent (0.02% digitonin, 0.12% CHAPS), together with cellobiose, buffer, and UDP-Glc. Entrapment conditions, therefore, are a compromise between preventing nonspecific precipitation of proteins and permitting sufficient enzyme activity for callose synthesis. Further enrichment of the enzyme released from the callose pellet was not obtained by rate-zonal glycerol gradient centrifugation, although its sedimentation rate was greatly enhanced by inclusion of divalent cations in the gradient. Preparations were markedly cleaner when product-entrapment was conducted on enzyme solubilized from plasma membranes isolated by aqueous two-phase partitioning rather than by gradient centrifugation. Product-entrapped preparations consistently contained polypeptides or groups of closely-migrating polypeptides at molecular masses of 92, 83, 70, 57, 43, 35, 31/29, and 27 kilodaltons. This polypeptide profile is in accordance with the findings of other callose synthase enrichment studies using a variety of tissue sources, and is consistent with the existence of a multi-subunit enzyme complex.  相似文献   

19.
Quaternary structure of ribulose-1, 5-bisphosphate (RuP2) carboxylase from the autotrophically grown cells of blue-green alga, Anabaena cylindrica, was studied. Sedimentation coefficient (s20, w) of the enzyme was determined to be 18.3 S by the sucrose density gradient centrifugation. The molecular weight was estimated to be 5.0 × 105 by the Sepharose 4B gel filtration technique. The purification of the enzyme from the algal cells was undertaken by means of sucrose density gradient centrifugation and DEAE-Sephadex A–50 ion-exchange column chromatography, and the structural make-up of the enzyme containing two subunits, A (M. W., 5.2 × 104) and B (M. W., 1.2 × 104) was established by the Na-dodecylsulfate polyacrylamide gel electrophoresis experiment. Structural similarity of the algal RuP2carboxylase with the spinach enzyme was further demonstrated by the Ouchterlony double immunodiffusion experiment.  相似文献   

20.
Aggregation of the enzyme acetyl-CoA: choline-O-acetyltransferase (ChAc, EC 2.3.1.6) which appears to be homogeneous has been observed. The molecular weight of the most abundant form of ChAc was estimated by gel filtration and sucrose gradient centrifugation to be in the range 58,000-62,000. The most frequently encountered aggregates were much larger and eluted in the void volume from Sephadcx® G-100 and G-150 indicating molecular weights in excess of 400,000. In fact, they were subsequently found to be 1.2 × 106 and 1.9 × 106 by sucrose gradient centrifugation. The percentage of activity associated with high molecular weight ChAc increased with purification, but these aggregates disappeared after storage for 2-3 weeks at ?20°C. The loss occurred independently of any fall in enzymic activity in the preparations examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号