首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nigrothalamic neurons were identified into thesubstantia nigra by their retrograde labelling with horseradish peroxidase. Axon terminals that contain glutamate (the excitatory transmitter) were revealed immunocytochemically with an immunogold electron microscopic technique. Ultrastructural parameters (the large and small diameters of axon terminals, area of their profiles, coefficient of form of profiles, large and small diameters of synaptic vesicles) were analyzed in all 240 synapses under study. Synaptic contacts localized on both nigrothalamic and unidentified neurons belonged to three morphologically specific groups. Synapses of the groups I and III, according to classification by Rinvik and Grofova, were characterized by a symmetric type of synaptic contact and contained polymorphic synaptic vesicles. Contacts in group-II synapses were asymmetric, and respective terminals contained round vesicles. Among the studied synapses, 65.8% were classified as group-I contacts, 25.0% belonged to group II, and 9.2% belonged to group III. Glutamate-positive axon terminals formed predominantly group-II synapses; such connections constituted 70% of this group's synapses. Sixty percent of glutamate-positive synapses were localized on the distal dendrites and 23% on the proximal dendrites, while 17% of such synapses were distributed on the somata of nigral neurons. Such a pattern of distribution of glutamate-positive synapses was observed on both nigrothalamic and unidentified nigral neurons. About 7% of glutamate-positive synapses were formed by very large axon terminals containing round synaptic vesicles; yet, the contacts of these terminals were of a symmetric type. Twenty percent of group-I synapses, i.e., synapses considered inhibitory connections, were found to manifest a weak immune reaction to glutamate.Neirofiziologiya/Neurophysiology, Vol. 28, No. 6, pp. 285–295, November–December, 1996.  相似文献   

2.
Protein synthesis at synaptic terminals contributes to LTP in hippocampus and to the formation of new synaptic connections by sensory neurons (SNs) of Aplysia. Here we report that after removal of the SN cell body, isolated SN synapses of Aplysia in culture express protein-synthesis dependent long-term facilitation (LTF) produced by 5-HT that decays rapidly. Changes in expression of a SN-specific neuropeptide sensorin in isolated SN varicosities parallel the changes in synaptic efficacy. At 24 h after 5-HT the magnitude of LTF produced at isolated SN synapses was significantly greater than that produced when SN cell bodies were present. LTF was maintained at 48 h at connections with SN cell bodies, but not at isolated SN synapses. The increase in synaptic efficacy at isolated SN synapses at 24 h was blocked by the protein synthesis inhibitor anisomycin. LTF was accompanied by changes in expression of sensorin. The increase in sensorin level at isolated SN varicosities with 5-HT was blocked by anisomycin or was reversed 48 h after 5-HT treatment alone. The results suggest that, as is the case for initial synapse formation between SNs and L7, changes in protein synthesis at synaptic terminals may contribute directly to LTF of stable synapses. Changes in expression within the cell body provide additional contributions for long-term maintenance of the new level of synaptic efficacy that was initiated directly by local changes in protein synthesis at or near synaptic terminals.  相似文献   

3.
The types of dendro-dendritic synapses and their participation in the synaptic, organization of superficial layers of the quadrigeminum superior tubercles were studied electron microscopically. In addition to simple forms of dendro-dentritic synapses the reciprocal dendro-dendritic synapses were revealed. Presynaptic dendrites formed the synaptic fields and glomerules of the superficial grey layer. The terminals of optical, cortical fibres from the visual cortex and other types of terminals terminated on presynaptic dendrites.  相似文献   

4.
In the first optic neuropile of the housefly Musca, photoreceptor terminals innervate fixed clusters of interneurons, one of which is the monopolar cell L2; L2's synapses in turn feed back upon the terminals. We examined the ultrastructure of these feedback synapses following degeneration of their normal targets, the receptor terminals; this was accomplished by photo-ablating the receptor cells after intraretinal injections of sulforhodamine. Even when all the terminals degenerated, their deafferentated target cells, including L2, remained structurally intact for at least 14 d. Despite this lack of obvious trans-synaptic degeneration, L2's synaptic connections did alter. Presynaptic organelles of the feedback synapses, synaptic ribbons and associated synaptic vesicles, soon appeared in L2's cytoplasm, separating from their site of attachment at the presynaptic membrane by invagination. Similar free-floating organelles and vesicles also occurred in another monopolar cell, L4. They were also occasionally encountered in L2, in normal, newly emerged flies at a time when a naturally occurring loss of feedback synapses is greatest. We interpret the process of internalization that forms these floating ribbons to be the first step in synaptic loss which occurs spontaneously, and that the rate is enhanced in L2 when its main synaptic targets, the receptor terminals, degenerate.  相似文献   

5.
The ultrastructure and the synaptic relationships of the orexin-A-like immunoreactive fibers in the dorsal raphe nucleus were examined with an immunoelectron microscopic method. At the electron microscopic level, most of the immunoreactive fibers, a varicosity appearance at the light microscopic level, were found as axon terminals. The large dense-cored vesicles contained in the immunoreactive axon terminals were the most intensely immunostained organellae. These axon terminals were often found to make synapses. While the axo-dendritic synapses were usually asymmetric in appearance, the axo-somatic synapses were symmetric. Orexin-A-like immunoreactive processes with no synaptic vesicles were also found. These processes often received asymmetric synapses. With less frequency, the synapses were found between the orexin-like immunoreactive processes. The results suggest that the orexin peptides are stored in the large dense-cored vesicles; the orexin-containing fibers may have influences on the physiological activities of the dorsal raphe nucleus through direct synaptic relationships.  相似文献   

6.
Morphological relationships between neuropeptide Y- (NPY) like and ghrelin-like immunoreactive neurons in the arcuate nucleus (ARC) were examined using light and electron microscopy techniques. At the light microscope level, both neuron types were found distributed in the ARC and could be observed making contact with each other. Using a preembedding double immunostaining technique, some NPY-immunoreactive axon terminals were observed at the electron microscope level to make synapses on ghrelin-immunoreactive cell bodies and dendrites. While the axo-somatic synapses were mostly symmetric in nature, the axo-dendritic synapses were both symmetric and asymmetric. In contrast, ghrelin-like immunoreactive (ghrelin-LI) axon terminals were found to make synapses on NPY-like immunoreactive (NPY-LI) dendrites although no NPY-like immunoreactive perikarya were identified receiving synapses from ghrelin-LI axon terminals. NPY-like axon terminals were also found making synapses on NPY-like neurons. Axo-axonic synapses were also identified between NPY- and ghrelin-like axon terminals. The present study shows that NPY- and ghrelin-LI neurons could influence each other by synaptic transmission through axo-somatic, axo-dendritic and even axo-axonic synapses, and suggests that they participate in a common effort to regulate the food-intake behavior through complex synaptic relationships.  相似文献   

7.
The distribution of synapses and synaptic bouton types in the mesencephalic trigeminal (Me5) nucleus was examined in a quantitative electron-microscopical study. Of 588 terminal boutons that were counted in the compact caudal part of the Me5 nucleus, less than 8% formed synapses on the somata of the predominantly unipolar Me5 neurons. About 79% formed synapses on fibres located between the Me5 somata, while about 13% of the vesicle-containing terminals had no clear synaptic specialization. All of these non-synaptic terminals were G type boutons, with pleomorphic and large characteristic dense-core vesicles. Approximately 60% of the axosomatic synapses were of the S type, containing spherical vesicles and an asymmetrical or symmetrical synaptic specialization. About 20, respectively 15% of the axosomatic synapses, were of the F, respectively P type; both are symmetrical synapse types containing either a majority of flat or pleomorphic vesicles. Less than 10% of the axosomatic synapses were of the G type. Although some proportional differences were noted, an almost similar bouton type distribution pattern was found for the axodendritic synapses suggesting that the axosomatic and axodendritic synapses in the Me5 nucleus are part of the same afferent fibre plexus covering the Me5 nucleus.  相似文献   

8.
In sensory systems, insight into synaptic arrangements on cells of known physiological response properties has helped our understanding of the structural basis for these properties. To carry out these types of studies, however, synaptic types in the region of interest must be defined. Unfortunately, defining synaptic types in the brainstem has proved to be a challenging enterprise. Our study was done to classify synapses in the gustatory part of the nucleus solitarius using objective quantitative criteria and a cluster analysis procedure. Cluster analysis allows classification of a population of objects, such as synaptic terminals, into groups that exhibit similar characteristics. Six terminal types were identified using cluster analysis and subsequent analyses of variance and post hoc tests. Unlike classification schemes used for the cerebral cortex, where synaptic apposition density thickness and shape of vesicles is useful (Gray's Type I and II synapses), the concentration of vesicles in a terminal was a more useful measurement with which to classify terminals in the nucleus solitarius. To validate that vesicle density (vesicles/μm2) is a useful defining characteristic to classify terminals in the nucleus solitarius, terminals of a known type were used. GABAergic terminals were identified using postembedding immunohistochemical techniques, and their vesicle density was determined. GABAergic terminals fall into the range of two of the terminal types defined by the cluster analysis and, based on vesicle density, two types of GABAergic terminals were identified. We conclude that vesicle density is a helpful means to identify synapses in this brainstem nucleus.  相似文献   

9.
Two types of presumed synaptic contacts have been recognized by electron microscopy in the synaptic plexus of the median ocellus of the dragonfly. The first type is characterized by an electron-opaque, button-like organelle in the presynaptic cytoplasm, surrounded by a cluster of synaptic vesicles. Two postsynaptic elements are associated with these junctions, which we have termed button synapses. The second synaptic type is characterized by a dense cluster of synaptic vesicles adjacent to the presumed presynaptic membrane. One postsynaptic element is observed at these junctions. The overwhelming majority of synapses seen in the plexus are button synapses. They are found most commonly in the receptor cell axons where they synaptically contact ocellar nerve dendrites and adjacent receptor cell axons. Button synapses are also seen in the ocellar nerve dendrites where they appear to make synapses back onto receptor axon terminals as well as onto adjacent ocellar nerve dendrites. Reciprocal and serial synaptic arrangements between receptor cell axon terminals, and between receptor cell axon terminals and ocellar nerve dendrites are occasionally seen. It is suggested that the lateral and feedback synapses in the median ocellus of the dragonfly play a role in enhancing transients in the postsynaptic responses.  相似文献   

10.
Protein synthesis at synaptic terminals contributes to LTP in hippocampus and to the formation of new synaptic connections by sensory neurons (SNs) of Aplysia. Here we report that after removal of the SN cell body, isolated SN synapses of Aplysia in culture express protein‐synthesis dependent long‐term facilitation (LTF) produced by 5‐HT that decays rapidly. Changes in expression of a SN‐specific neuropeptide sensorin in isolated SN varicosities parallel the changes in synaptic efficacy. At 24 h after 5‐HT the magnitude of LTF produced at isolated SN synapses was significantly greater than that produced when SN cell bodies were present. LTF was maintained at 48 h at connections with SN cell bodies, but not at isolated SN synapses. The increase in synaptic efficacy at isolated SN synapses at 24 h was blocked by the protein synthesis inhibitor anisomycin. LTF was accompanied by changes in expression of sensorin. The increase in sensorin level at isolated SN varicosities with 5‐HT was blocked by anisomycin or was reversed 48 h after 5‐HT treatment alone. The results suggest that, as is the case for initial synapse formation between SNs and L7, changes in protein synthesis at synaptic terminals may contribute directly to LTF of stable synapses. Changes in expression within the cell body provide additional contributions for long‐term maintenance of the new level of synaptic efficacy that was initiated directly by local changes in protein synthesis at or near synaptic terminals. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 275–286, 2003  相似文献   

11.
GABA is the main inhibitory neurotransmitter that participates in the regulation of cholinergic outflow to the airways. We have tested the hypothesis that a monosynaptic GABAergic circuit modulates the output of airway-related vagal preganglionic neurons (AVPNs) in the rostral nucleus ambiguus by using a dual-labeling electron microscopic method combining immunocytochemistry for glutamic acid decarboxylase (GAD) with retrograde tracing from the trachea. We also determined the effects of blockade of GABAA receptors on airway smooth muscle tone. The results showed that retrogradely labeled AVPNs received a significant GAD-immunoreactive (GAD-IR) terminal input. Out of a pooled total of 3,161 synaptic contacts with retrogradely labeled somatic and dendritic profiles, 20.2% were GAD-IR. GAD-IR terminals formed significantly more axosomatic synapses than axodendritic synapses (P < 0.02). A dense population of GABAergic synaptic contacts on AVPNs provides a morphological basis for potent physiological effects of GABA on the excitability of AVPNs. GAD-IR terminals formed exclusively symmetric synaptic specializations. GAD-IR terminals were significantly larger (P < 0.05) in both length and width than unlabeled terminals synapsing on AVPNs. Therefore, the structural characteristics of certain nerve terminals may be closely correlated with their function. Pharmacological blockade of GABAA receptors within the rostral nucleus ambiguus increased activity of putative AVPNs and airway smooth muscle tone. We conclude that a tonically active monosynaptic GABAergic circuit utilizing symmetric synapses regulates the discharge of AVPNs.  相似文献   

12.
An increased intake of the antioxidant α-Tocopherol (vitamin E) is recommended in complicated pregnancies, to prevent free radical damage to mother and fetus. However, the anti-PKC and antimitotic activity of α-Tocopherol raises concerns about its potential effects on brain development. Recently, we found that maternal dietary loads of α-Tocopherol through pregnancy and lactation cause developmental deficit in hippocampal synaptic plasticity in rat offspring. The defect persisted into adulthood, with behavioral alterations in hippocampus-dependent learning. Here, using the same rat model of maternal supplementation, ultrastructural morphometric studies were carried out to provide mechanistic interpretation to such a functional impairment in adult offspring by the occurrence of long-term changes in density and morphological features of hippocampal synapses. Higher density of axo-spinous synapses was found in CA1 stratum radiatum of α-Tocopherol-exposed rats compared to controls, pointing to a reduced synapse pruning. No morphometric changes were found in synaptic ultrastructural features, i.e., perimeter of axon terminals, length of synaptic specializations, extension of bouton-spine contact. Gliasynapse anatomical relationship was also affected. Heavier astrocytic coverage of synapses was observed in Tocopherol-treated offspring, notably surrounding axon terminals; moreover, the percentage of synapses contacted by astrocytic endfeet at bouton-spine interface (tripartite synapses) was increased.These findings indicate that gestational and neonatal exposure to supranutritional Tocopherol intake can result in anatomical changes of offspring hippocampus that last through adulthood. These include a surplus of axo-spinous synapses and an aberrant gliasynapse relationship, which may represent the morphological signature of previously described alterations in synaptic plasticity and hippocampus-dependent learning.Key words: Vitamin E, CA1 stratum radiatum, axo-spinous synapses, glia-synapse relationship, tripartite synapses, morphometry, electron microscopy  相似文献   

13.
The ultrastructure and synaptic relations of neurotensinergic neurons in the rat dorsal raphe nucleus (DRN) were examined. The neurotensin-like immunoreactive (NT-LI) neurons in the DRN were fusiform or spherical. The NT-LI perikarya could only be detected in colchicine-treated animals whereas the immunoreactive axon terminals could only be found in the anirnals not treated with colchicine. Although many NT-LI dendrites received synapses from nonimmunoreactive axon terminals, the NT-LI perikarya received few synapses. NT-LI axon terminals also made synapses on nonimmunoreactive dendrites. Occasionally, synapses were found between the NT-LI axon terminals and NT-LI dendrites in the cases in which the animals were not treated with colchicine.  相似文献   

14.
Characterization of orexin A immunoreactivity in the rat area postrema   总被引:1,自引:0,他引:1  
The distribution of orexin A immunoreactivity and the synaptic relationships of orexin A-positive neurons in the rat area postrema were studied using both light and electron microscopy techniques. At the light microscope level, numerous orexin A-like immunoreactive fibers were found within the area postrema. Using electron microscopy, immunoreactivity within fibers was confined primarily to the axon terminals, most of which contained dense-cored vesicles. Both axo-somatic and axo-dendritic synapses made by orexin A-like immunoreactive axon terminals were found, with these synapses being both symmetric and asymmetric in form. Orexin A-like immunoreactive axon terminals could be found presynaptic to two different immunonegative profiles including the perikarya and dendrites. Occasionally, some orexin A-like immunoreactive profiles, most likely to be dendrites, could be seen receiving synaptic inputs from immunonegative or immunopositive axon terminals. The present results suggest that the physiological function of orexin A in the area postrema depends on synaptic relationships with other immunopositive and immunonegative neurons, with the action of orexin A mediated via a self-modulation feedback mechanism.  相似文献   

15.
Galanin-like peptide (GALP) is a novel peptide which is isolated from the porcine hypothalamus. GALP-containing neurons are present in the arcuate nucleus (ARC), being particularly densely concentrated in medial posterior regions. To observe the ultrastructure and synaptic relationships of GALP-containing neurons in the ARC, light and immunoelectron microscopy techniques were used. At the light microscope level, GALP-containing neurons were observed distributed rostrocaudally throughout the ARC, with the majority present in the posterior, periventricular zones. At the electron microscope level, many immunopositive dense-cored vesicles were evident in the perikarya, dendrites and axon terminals of the GALP-containing neurons. Furthermore, these neurons received synapses from immunonegative axon terminals that were symmetric in the case of synapses made on perikarya, and both asymmetric and symmetric for synapses made on dendrites. Axon terminals of GALP-containing neurons often made synapses on immunonegative dendrites. Such synapses were all symmetric. Synapses were also found between axon terminals and perikarya as well as dendrites of GALP-containing neurons. These findings suggest that the physiological role of the GALP-containing neurons in the ARC is based on complex synaptic relationships between GALP-containing neurons and either GALP-immunopositive or -immunonegative neurons.  相似文献   

16.
Two weeks after colchicine nerve treatment the evoked transmitter release was blocked in part of the frog sartorius synapses, with spontaneous activity being absent from some of them. In the synapses with evoked and spontaneous transmitter release preserved within this period of time, the magnitudes of the absolute refractory phase of nerve terminals were significantly higher than the control ones, while in part of synapses, the frequency of miniature end plate potentials (MEPP) was considerably increased. Nerve stimulation (5 imp.s-1) led to a rise of the amplitude of evoked potentials and of MEPP frequency followed by irreversible blockade of synaptic activity. It is concluded that substances transported by rapid axonal flow control the level of membrane potential of nerve terminals and are fairly important for presynaptic membrane integrity.  相似文献   

17.
In the retina of chimaeric mice of rd and wild-type genotypic combination, selective loss of rd/rd photoreceptor cells, after initial development, leads to a mosaic retina with variable amounts of normal photoreceptor cells present over the retinal surface. In some of the rod terminals of these retinas the synaptic complexes with the second order retinal neurons are seen to contain multiple synaptic ribbons and an increased number of profiles of the postsynaptic elements. These changes are observed only in the rod terminals and not in the cone pedicles. Computer aided three-dimensional reconstruction of the altered synapses shows that these changes result from an increase in the number of synaptic sites, characterized by multiplication of the synaptic ribbons and enlargement of the second order neuronal processes. A quantitative analysis of such synapses, based on serial electron micrographs, shows that these are most frequently located in the retinal regions of the chimaeric individuals that have suffered maximum photoreceptor cell loss. Thus synaptic growth appears to take place as a reaction to the reduction of afferent input to the postsynaptic components. These findings demonstrate persistent synaptic plasticity in the rod terminals of mammalian retina during the maturational phase of late postnatal development. Compensatory synaptic growth in the rod terminals, as recorded here, can have important implications for the maintenance of visual sensitivity in the diseased or ageing retina.  相似文献   

18.
Patel  V  Govind  C. K 《Brain Cell Biology》1997,26(6):389-398
A motor unit in the stomach of the blue crab, Callinectes sapidus, consists of four separate muscles involved in different aspects of the trituration and filtering of food. Motor nerve terminals to two of the muscles (CPV7a and GM5) release small amounts of transmitter (low-output) while those to the other two muscles (CV2 and CV3) release between three and five-fold greater amounts (high-output). Structural features underlying the disparity in synaptic strength were analysed with thin serial-section electron microscopy. Nerve terminals were similar in their volume percent of mitochondria, clear vesicles and dense core vesicles among the four muscles. This was also the case for the number and size of synaptic contacts. However, presynaptic dense bars representing active zones were longer and occurred more frequently at high-output synapses than at low-output ones. High-output synapses were also characterized by the close spacing of adjacent dense bars. The longer and more closely spaced dense bars at high-output synapses would be factors in the generation of larger synaptic potentials in these terminals compared to their low-output counterparts. Other factors, however, need to be considered to fully account for the physiological differences in synaptic strength among the four muscles.  相似文献   

19.
Synaptic terminals on branches of an excitatory motor axon in a spider crab (Hyas areneas) were examined by electron microscopy to determine whether differences in size, structure, and number of synapses could be correlated with differences in transmitter release. Terminals releasing relatively large amounts of transmitter during low frequencies of nerve impulses ("high-output" terminals) had larger synapses, more prominent presynaptic dense bodies (active zones), and fewer synapses per unit length than terminals releasing relatively small amounts of transmitter ("low-output" terminals). Neither the difference in synaptic area, nor the quantitative differences in the active zones, were sufficient in themselves to explain the difference in synaptic efficacy, and it is postulated that a non-linear relationship may exist between structural features of the synapse and release of transmitter by a nerve impulse, and that differences other than those apparent from the ultrastructure could be involved. Greater facilitation at low-output terminals with high frequencies of nerve impulses may be due to greater reserves of "immediately available" transmitter, and to recruitment or activation of more individual synaptic contacts.  相似文献   

20.
Glutamate and GABA mediate most of the excitatory and inhibitory synaptic transmission; they are taken up and accumulated in synaptic vesicles by specific vesicular transporters named VGLUT1-3 and VGAT, respectively. Recent studies show that VGLUT2 and VGLUT3 are co-expressed with VGAT. Because of the relevance this information has for our understanding of synaptic physiology and plasticity, we investigated whether VGLUT1 and VGAT are co-expressed in rat cortical neurons. In cortical cultures and layer V cortical terminals we observed a population of terminals expressing VGLUT1 and VGAT. Post-embedding immunogold studies showed that VGLUT1+/VGAT+ terminals formed both symmetric and asymmetric synapses. Triple-labeling studies revealed GABAergic synapses expressing VGLUT1 and glutamatergic synapses expressing VGAT. Immunoisolation studies showed that anti-VGAT immunoisolated vesicles contained VGLUT1 and anti-VGLUT1 immunoisolated vesicles contained VGAT. Finally, vesicles containing VGAT resident in glutamatergic terminals undergo active recycling. In conclusion, we demonstrate that in neocortex VGLUT1 and VGAT are co-expressed in a subset of axon terminals forming both symmetric and asymmetric synapses, that VGLUT1 and VGAT are sorted to the same vesicles and that vesicles at synapses expressing the vesicular heterotransporter participate in the exo-endocytotic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号