首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autonomous radiation-induced leukemia virus (RadLV) replication could be detected in mouse 3T3 cells by the development of interference with murine sarcoma virus (MSV), the appearance of covert helper activity for defective MSV, and by the induction of cytopathic effect type foci in MSV-transformed, leukemia virus-negative (S+L-) cells. A chronic infection of either 3T3 or S+L- cells with RadLV could be established. Both RadLV infectivity and helper activity were demonstrated in the same peak at a buoyant density of 1.16 g/cm(3). Additionally a soluble inhibitor of MSV focus formation was found which could be separated from infectious RadLV. Examination of cell clones derived from chronically infected 3T3 cells showed that essentially every cell was infected and produced both infectious RadLV and low levels of inhibitor. Quantitative comparisons of autonomously replicating RadLV in normal 3T3 and S+L- cells suggested that RadLV may consist of several populations of virus of varying replicative potential. Apparently 99% of RadLV can be assayed only as helper units in normal cells or as replicative units in S+L- cells. To explain the atypical results, a model for RadLV deficiency is proposed.  相似文献   

2.
The ability of various murine leukemia viruses (MuLVs) to replicate in mouse cells exhibiting Fv-1 restriction was analyzed by quantitative dose-response assays. In particular, the effect of infection with N, B, or NB tropic MuLVs on Fv-1b restriction in Balb/3T3 cells was measured with an infection center technique in which pseudotypes of murine sarcoma virus (MSV), which have been shown to exhibit Fv-1 dependence of expression, were used to quantitate the degree of restriction. The resulting dose-response curves indicate that productive infection of a single Balb/3T3 cell with N tropic MSV requires co-infection with two MuLV particles. These two MuLV particles are functionally distinguishable. One of them must be N tropic and must be added less than 18 hr after infection with N tropic MSV. The second MuLV particle, on the other hand, need not be N tropic and may be added at any time. Balb/3T3 cultures infected with sufficient N tropic MuLV become fully permissive to transformation by N tropic MSV and to productive infection by N tropic MuLV. This effect, termed "abrogation" of Fv-1 restriction, results from infection of a Balb/3T3 cell with a single N tropic MuLV particle, but apparently occurs without viral replication. It seems probable that a requirement for abrogation of Fv-1b restriction by a single infectious particle of N tropic MuLV, which does not itself replicate, is responsible for the two-hit dose-response relationship observed in infectivity titrations of N tropic MuLV in Balb/3T3 cells. The requirements that N tropic MuLV be added within a specified time period with regard to N tropic MSV in order for abrogation to occur suggests that in the absence of N tropic MuLV, the cellular Fv-1b restriction mechanism inactivates N tropic MSV by 9 hr after infection.  相似文献   

3.
We have described a clone of mouse cells, termed "8A," which appears to be infected with a replication-defective variant of Moloney murine leukemia virus (MuLV) (Rein et al., J. Virol. 25:146-156, 1978). Clone 8A cells release virus particles which do not form plaques in the standard XC test. However, approximately 10(2) particles per ml of clone 8A supernatant do form plaques in a modified XC test (the "complementation plaque assay"), in which the assay cells are coinfected with the XC-negative, nondefective amphotropic MuLV as well as the test virus. Superinfection of clone 8A cells themselves with amphotropic MuLV results in the production of approximately 10(5), rather than approximately 10(2), particles per ml which register in the complementation plaque assay. This increase is due to the rescue of replication-defective ecotropic MuLV from clone 8A cells by amphotropic MuLV since (i) this ecotropic MuLV can only form XC plaques in cells which are coinfected with amphotropic MuLV; and (ii) it is possible to transmit this defective variant, rescued from superinfected clone 8A cells, to a fresh clone of normal mouse cells. The time course of production of the rescued MuLV particles by superinfected clone 8A cells is virtually identical to that of rescue from these cells of murine sarcoma virus. Amphotropic MuLV superinfection of "NP-N" cells, which contain a "non-plaque-forming" variant of N-tropic MuLV (Hopkins and Jolicoeur, J. Virol. 16:991-999, 1975), also increases the titer of particles registering in the complementation plaque assay; thus, NP-N cells, like clone 8A cells, contain a rescuable defective variant of ecotropic MuLV.  相似文献   

4.
In effort to understand how N or B tropism is determined in murine leukemia virus (MuLV) particles, we analyzed the MuLV produced after dual infection of mouse cells by N- and B-tropic MuLV. The progeny MuLV from such a mixed infection are sensitive to Fv-1 restriction in both N- and B-type cells, but are still highly infectious for mouse cells which do not exhibit Fv-1 restriction. This dual sensitivity to Fv-1 restriction is a phenotypic property of MuLV produced by mixedly infected cells, since individual virus clones derived from this MuLV are either N- or B-tropic. In further experiments, we superinfected murine sarcoma virus (MSV)-transformed cells with mixtures of N- and B-tropic MuLVs. The rescued MSV is restricted in its ability to transforms both N- and B-type cells. The results suggest that N- and B-tropic MuLVs specify different determinants, which are incorporated into virions along with the viral genome and which are the recognition sites for Fv-1 restriction. The presence of a given determinant in a virion renders the virus sensitive to restriction in cells of the opposite Fv-1 type.  相似文献   

5.
Although the doses of X-ray (312-2,500 R) used for irradiation of cells caused impairment of DNA synthesis and cell replication, co-cultivation of X-irradiated MuLV- carrier cells with un-irradiated nonproducer cells of MSV-induced tumour resulted in as much as 20-fold increase in MSV retrieval compared with the un-irradiated control. The enhancement was apparent also as a 3-fold increase in the number of cells producing MSV (infectious centers) in the co-cultivation plate. This suggested that the MSV genome rescue efficiency in terms of MSV per cell, as well as the number of cells producing MSV, increased markedly. By uridine-3H-labeling and focus assay experiments, evidence was presented which suggested that an increase in MSV/MuLV ratio in the culture fluid of co-cultivation plates was obtained when the MuLV-carrier cells were pre-irradiated. By contrast, X-irradiation of the nonproducer cells prior to co-cultivation caused only reductions of MSV genome rescue efficiency. However, use of X-irradiated MuLV-carrier cells for co-cultivation with X-irradiated nonproducer cells restored this efficiency to some extent. The dose-survival curve of the nonproducer cells was not much different from those of the MuLV-carrier cells after X-irradiation. It was suggested that the viability of nonproducer cells was required for replication of MuLV transferred from the carrier cells and for subsequent MSV genome rescue.  相似文献   

6.
7.
Pseudotype virus vectors serve as a powerful tool for the study of virus receptor usage and entry. We describe the development of murine leukemia virus (MuLV) particles pseudotyped with the visna virus envelope glycoprotein and encoding a green fluorescent protein reporter as a tool to study the expression of the visna virus receptor. Functional MuLV/visna virus pseudotypes were obtained when the cytoplasmic tail of the visna virus envelope TM protein was truncated to 3, 7, or 11 amino acids in length. MuLV/visna virus particles were used to transduce a panel of cell types from various organisms, including sheep, goat, human, hamster, mouse, monkey, and quail. The majority of the cells examined were susceptible to MuLV/visna pseudotype viruses, supporting the notion that the visna virus cellular receptor is a widely expressed protein found in many species. Of 16 different cell types tested, only mouse embryo fibroblast NIH 3T3 cells, hamster ovary CHO cells, and the human promonocyte cell line U937 cells were not susceptible to transduction by the pseudotyped virus. The production of functional MuLV/visna virus pseudotypes has provided a sensitive, biologically relevant system to study visna virus cell entry and envelope-receptor interactions.  相似文献   

8.
9.
We constructed a chimeric human T-cell lymphotropic virus type 1 (HTLV-1) provirus in which the original envelope precursor sequence was replaced by that of ecotropic Moloney murine leukemia virus (Mo-MuLV). Chimeric particles produced by transient transfection of this chimeric provirus were infectious for murine cells, such as NIH 3T3 fibroblasts, lymphoid EL4 cells, and primary CD4(+) T lymphocytes, whereas HTLV-1 particles were not. The infectivity of chimeric particles increased 10 times when the R peptide located at the carboxy terminus of the MuLV envelope glycoprotein was deleted. Primary murine CD4(+) T lymphocytes, infected by the Delta R chimeric virus, released particles that could spread the infection to other naive murine lymphoid cells. This chimeric virus, with the Mo-MuLV envelope glycoprotein and the replication characteristics of HTLV-1, should be useful in studying the pathogenesis of HTLV-1 in a mouse model.  相似文献   

10.
A murine sarcoma virus (MSV) was recovered from an (NFS X NS.C58v-1) F1 mouse which developed splenic sarcoma and erythroleukemia 6 months after inoculation with a mink cell focus-inducing murine leukemia virus (MuLV) isolated from an NFS mouse infected with a wild mouse ecotropic MuLV. The MSV, designated NS.C58 MSV-1, induced foci of transformation in mouse and rat fibroblasts, and inoculation of mice of various strains 2 weeks of age or younger resulted in erythroleukemia and sarcomatous lesions in spleen, lymph node, and brain. The MSV provirus was molecularly cloned from a genomic library prepared from transformed non-producer rat cells. The 8.8-kilobase proviral DNA contained a 1.0-kilobase p21 ras coding segment which replaced most of the gp70-encoding portion of an MuLV, most likely the endogenous C58v-1 ecotropic virus. The ras oncogene is closely related to v-Ha-ras by hybridization, expression of p21 protein, and nucleotide sequence. It is nearly identical in sequence to v-bas, the only previously described transduced, activated mouse c-ras. At position 12 in the p21 coding region, arginine is substituted for the naturally occurring glycine present in c-ras. A second MSV isolate is described which is similar to NS.C58 MSV-1 except for a 100- to 200-base-pair deletion in the noncoding region of the ras-containing insert.  相似文献   

11.
The size and quantity of virus-specific RNA in five non-virus-producing mouse cells transformed by the Moloney isolate of murine sarcoma virus (MSV) was determined. Hybridization of RNA from transformed cells with the [(3)H]DNA product of the RNA-directed DNA polymerase of the murine sarcoma-leukemia virus was used to detect and quantitate virus-specific RNA. The amount of virus-specific RNA in non-virus-producing cells was less than one-sixth of that found in virus-producing cells. A striking correlation was found between the amount of intracellular virus-specific RNA and the degree of agglutination by conconavalin A previously reported for the four non-virus-producing NIH/3T3 cell lines (Salzberg and Green, 1974). A major RNA subunit sedimenting at 26 to 28S was detected in all five MSV-transformed non-virus-producing cells. This could represent the RNA genome of defective MSV.  相似文献   

12.
The xenotropic mouse type C virus, originally detected in cultured embryo cells from New Zealand Black (NZB) mice, has been recovered from over 50 adult NZB animals and 15 NZB embryos. Its presence is best detected by measuring its ability to rescue a murine sarcoma virus (MSV) genome from a non-virus-producing MSV-transformed rat cell. The virus can serve as a helper for replication of MSV. It has a distinct type-specific coat and is a prototype for a third serotype of mouse type C viruses, NZB. The xenotropic virus may have an evolutionary role since it has a wide host range, including the ability to infect avian cells. It is produced spontaneously by all cells cultivated from NZB tissues and accounts for the high concentration of viral antigens associated with NZB tissues. The extent of virus production is similar in both male and female mice. All cell clones established from embryos also produce the virus. A variability in the intracellular regulation of virus replication is suggested since tissue cells from the same animal differ quantitatively in their ability to produce xenotropic viruses. Since enhanced spontaneous virus production is associated with cells from NZB mice, the virus may play a role in the autoimmune disease of this mouse strain.  相似文献   

13.
Rat liver cells in vitro were transformed with chicken sarcoma virus B77, giving RL(B77) cells, and with murine sarcoma virus (Harvey), giving RL(MSV) cells. Rat liver cells transformed spontaneously in vitro were designated RL cells. In addition, the RL(MSV) cell line was adapted for growth in culture fluid containing 25 mug of 5-bromodeoxyuridine per ml. All cell lines were tumorigenic in 1-wk-old rats. The number of cells needed for induction of tumor growth was 1,000-fold higher in the case of RL(B77) cells in comparison with RL(MSV) cells and RL cells. No production of viral particles from any of the cell lines investigated was detected by plating concentrated supernatant fluid of the cultures on different secondary embryo cells with and without fusion by Sendai virus, by labeling with uridine-5-(3)H, or by assay for deoxyribonucleic acid polymerase activity. The viral genome was rescued by fusion of RL(B77) cells with chicken cells. Chicken sarcoma virus rescued from (RL(B77) cells differed in plating efficiency on duck cells from B77 virus rescued from transformed rat embryo cells. No virus was rescued after fusion of RL(MSV) and RL cells with mouse, rat, or chicken embryo cells. Infectious murine sarcoma virus can be induced by 5-bromodeoxyuridine from RL(MSV) cells.  相似文献   

14.
Comparison of Murine Sarcoma Viruses in Nonproducer and S+L?-Transformed Cells   总被引:11,自引:11,他引:0  
The biologic properties of murine sarcoma viruses in nonproducer and S(+)L(-) cells were compared. Each virus was found to be genetically stable through at least two cycles of rescue and transmission to new cells. There was no evidence for production of a defective murine leukemia virus by S(+)L(-) cells. The results are most consistent with the hypothesis that the sarcoma genome in S(+)L(-) cells contains information for replication functions which the virus in nonproducer cells either lacks or does not express.  相似文献   

15.
The mixture of retroviruses termed LP-BM5 murine leukemia virus (MuLV) contains a replication-defective genome (BM5def), the crucial element for induction of murine AIDS (MAIDS), as well as helper B-tropic ecotropic and mink cell focus-forming MuLV. Among Fv-1b mouse strains, C57BL mice are sensitive to infection by these viruses and to development of MAIDS, but A/J mice are highly resistant to all viral components and to induction of disease. Inasmuch as previous genetic studies indicated a major role in susceptibility for the H-2D locus within the MHC, the effect of CD8+ T cells in A/J resistance to MAIDS was analyzed by depletion of this subset using mAb. A/J mice treated with anti-CD8 mAb beginning soon after inoculation with LP-BM5 MuLV developed disease within 5 wk after virus inoculation. Histopathologic and flow cytometry alteration of tissues and cells from the mAb-treated mice were identical to those seen in virus-infected MAIDS-sensitive strains, and assays for MuLV demonstrated high-level expression of ecotropic MuLV and integration of BM5def. Parallel studies of A/J mice treated with anti-CD4 mAb after infection revealed enhanced expression of ecotropic MuLV but no integration of BM5def, and no signs of MAIDS were detected. These observations indicate that CD8+ T cells are critical in the resistance of A/J mice to LP-BM5 MuLV replication and development of disease and suggest that CD4+ T cells play a role in regulation of ecotropic virus replication.  相似文献   

16.
Two subclones of Swiss mouse cells infected with Moloney murine leukemia virus (M-MuLV) were tested for their response to interferon (IFN). Whereas M-MuLV production in the two subclones was inhibited to the same extent, one of the subclones was significantly more sensitive to IFN when the antiviral effect was measured by replication of encephalomyocarditis (EMC) virus. The same subclone was also more sensitive to the anticellular activities of IFN. Additionally, NIH 3T3 cells infected with M-MuLV were completely resistant to IFN actions when EMC virus replication or the anticellular activities were tested. However, under the same conditions, M-MuLV production was completely inhibited by IFN. These results indicate that IFN may affect cell growth functions and EMC replication through mechanisms different from those by which MuLV production is inhibited.  相似文献   

17.
Murine cells do not support efficient assembly and release of human immunodeficiency virus type 1 (HIV-1) virions. HIV-1-infected mouse cells that express transfected human cyclin T1 synthesize abundant Gag precursor polyprotein, but inefficiently assemble and release virions. This assembly defect may result from a failure of the Gag polyprotein precursor to target to the cell membrane. Plasma membrane targeting of the precursor is mediated by the amino-terminal region of polyprotein. To compensate for the assembly block, we substituted the murine leukemia virus matrix coding sequences into an infectious HIV-1 clone. Transfection of murine fibroblasts expressing cyclin T1 with the chimeric proviruses resulted in viruses that were efficiently assembled and released. Chimeric viruses, in which the cytoplasmic tail of the transmembrane subunit, gp41, was truncated to prevent potential interference between the envelope glycoprotein and the heterologous matrix, could infect human and murine cells. They failed to further replicate in the murine cells, but replicated with delayed kinetics in human MT-4 cells. These findings may be useful for establishing a murine model for HIV-1 replication.  相似文献   

18.
We have studied the virus produced by a clone, termed 8A, that was isolated from a culture of murine sarcoma virus-transformed mouse cells after superinfection with Moloney murine leukemia virus (MuLV-M). Clone 8A produced high levels of type C virus particles, but only a low titer of infectious murine sarcoma virus and almost no infectious MuLV. When fresh cultures of mouse cells were infected with undiluted clone 8A culture fluids, they released no detectable pogeny virus for several weeks after infection. Fully infectious MuLV was then produced in these cultures. This virus was indistinguishable from MuLV-M by nucleic acid hybridization tests and in its insensitivity to Fv-1 restriction. It also induced thymic lymphomas in BALB/c mice. To explain these results, we propose that cone 8A is infected with a replication-defective variant of MuLV-M. Particles produced by clone 8A, containing this defective genome, can establish an infection in fresh cells but cannot produce progency virus at detectable levels. Several weeks after infection, the defect in the viral genome is corrected by back-mutation or by recombination with endogenous viral genomes, resulting in the formation of fully infectious progeny MuLV. The progeny MuLV'S that arose in two different experiments were found to be genetically different from each other. This is consistent with the hypothesis that, in each experiment, the progeny virus is formed clone 8A cells and assayed for infectivity by the calcium phosphate transfection technique. No detectable MuLV was produced by cells treated with this DNA. This finding, along with positive results obtained in control experiments, indicates that clone 8A cells do not contain a normal MuLV provirus.  相似文献   

19.
A virus (M-7) isolated from baboon placental tissue demonstrates many similarities to endogenous feline virus RD-114. Immunodiffusion analysis shows a group-specific antigen (gs-1) line of identity between M-7 and RD-114. Anti-RD-114 DNA polymerase IgG inhibits M-7 polymerase by 57% compared to 97% for RD-114. M-7 virus has helper activity as demonstrated by rescue of murine sarcoma virus (MSV) from sarcoma-positive leukemia-negative human amnion cells. The host range of the rescued M-7 pseudotype of MSV, MSV (M-7), is similar to that of RD-114 virus. MSV (M-7) is also able to transform baboon cells and causes no detectable transformation of feline cells without addition of helper feline leukemia virus. Interference properties of M-7 and RD-114 virus are identical. Virus-specific neutralizing antisera, although partially cross-reacting, can distinguish MSV (M-7) from MSV (RD-114). These similarities and differences between RD-114 and M-7 viruses are best explained as type-specific differences between two viruses within the same strain.  相似文献   

20.
The infectious virus derived from the molecularly cloned genome of the neurotropic ecotropic murine Cas-BR-E retrovirus was previously shown to have retained the ability to induce hind-limb paralysis and leukemia when inoculated into susceptible mice (P. Jolicoeur, N. Nicolaiew, L. DesGroseillers, and E. Rassart, J. Virol. 45:1159-1163, 1983). To map the viral sequences encoding the leukemogenic determinant(s) of this virus, we used chimeric viral genomes constructed in vitro between cloned viral DNAs from the leukemogenic Cas-BR-E murine leukemia virus (MuLV) and from the related nonleukemogenic amphotropic 4070-A MuLV. Infectious chimeric MuLVs, recovered from NIH 3T3 cells microinjected with these DNAs, were inoculated into newborn NIH Swiss, SIM.S, and SWR/J mice to test their leukemogenic potential. We found that each chimeric MuLV, harboring either the long terminal repeat, the gag-pol, or the pol-env region of the Cas-BR-E MuLV genome, was leukemogenic, indicating that this virus harbors several determinants of leukemogenicity mapping in different regions of its genome. This result suggests that the amphotropic 4070-A MuLV has multiple regions along its genome which prevent the expression of its leukemogenic phenotype, and it also shows that substitution of only one of these regions for Cas-BR-E MuLV sequences is sufficient to make it leukemogenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号