首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The plant hormone ethylene regulates many aspects of growth and development. Loss-of-function mutations in ETHYLENE INSENSITIVE2 (EIN2) result in ethylene insensitivity in Arabidopsis, indicating an essential role of EIN2 in ethylene signaling. However, little is known about the role of EIN2 in species other than Arabidopsis. To gain a better understanding of EIN2, a petunia (Petunia x hybrida cv Mitchell Diploid [MD]) homolog of the Arabidopsis EIN2 gene (PhEIN2) was isolated, and the role of PhEIN2 was analyzed in a wide range of plant responses to ethylene, many that do not occur in Arabidopsis. PhEIN2 mRNA was present at varying levels in tissues examined, and the PhEIN2 expression decreased after ethylene treatment in petals. These results indicate that expression of PhEIN2 mRNA is spatially and temporally regulated in petunia during plant development. Transgenic petunia plants with reduced PhEIN2 expression were compared to wild-type MD and ethylene-insensitive petunia plants expressing the Arabidopsis etr1-1 gene for several physiological processes. Both PhEIN2 and etr1-1 transgenic plants exhibited significant delays in flower senescence and fruit ripening, inhibited adventitious root and seedling root hair formation, premature death, and increased hypocotyl length in seedling ethylene response assays compared to MD. Moderate or strong levels of reduction in ethylene sensitivity were achieved with expression of both etr1-1 and PhEIN2 transgenes, as measured by downstream expression of PhEIL1. These results demonstrate that PhEIN2 mediates ethylene signals in a wide range of physiological processes and also indicate the central role of EIN2 in ethylene signal transduction.  相似文献   

3.
Tang X  Gomes A  Bhatia A  Woodson WR 《The Plant cell》1994,6(9):1227-1239
The differential expression of the petunia 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene family during flower development and senescence was investigated. ACC oxidase catalyzes the conversion of ACC to ethylene. The increase in ethylene production by petunia corollas during senescence was preceded by increased ACC oxidase mRNA and enzyme activity. Treatment of flowers with ethylene led to an increase in ethylene production, ACC oxidase mRNA, and ACC oxidase activity in corollas. In contrast, leaves did not exhibit increased ethylene production or ACC oxidase expression in response to ethylene. Gene-specific probes revealed that the ACO1 gene was expressed specifically in senescing corollas and in other floral organs following exposure to ethylene. The ACO3 and ACO4 genes were specifically expressed in developing pistil tissue. In situ hybridization experiments revealed that ACC oxidase mRNAs were specifically localized to the secretory cells of the stigma and the connective tissue of the receptacle, including the nectaries. Treatment of flower buds with ethylene led to patterns of ACC oxidase gene expression spatially distinct from the patterns observed during development. The timing and tissue specificity of ACC oxidase expression during pistil development were paralleled by physiological processes associated with reproduction, including nectar secretion, accumulation of stigmatic exudate, and development of the self-incompatible response.  相似文献   

4.
5.
6.
7.
The effect of auxin on stamen and pistil development in tobacco flowers was investigated by means of the localized expression of rolB (root loci B), an Agrobacterium oncogene that increases auxin sensitivity in a cell-autonomous fashion. When rolB is driven by the promoter of the meiosis-specific Arabidopsis gene DMC1 (disrupted meiotic cDNA 1), expression occurs earlier in male than in female developing organs, resulting in a delay in anther dehiscence with respect to normal timing of pistil development. As a consequence of this developmental uncoupling, self-pollination is prevented in pDMC1:rolB plants. Histological analysis of pDMC1:GFP plants indicates that in tobacco, this promoter is active not only in meiocytes but also in somatic tissues of the anther. In contrast, simultaneous expression of rolB in anther and pistil somatic tissues, achieved by expressing a construct containing rolB under the control of the promoter of the petunia gene FBP7 (floral binding protein 7), results in a concomitant delay of both anther dehiscence and pistil development without affecting self-pollination of the plants. Analysis of plants harboring the pFBP7:GUS construct shows that in tobacco, this promoter is active not only in the ovules, as described for petunia, but also in pistil and anther somatic tissues involved in the dehiscence program. The delay in anther dehiscence and pistil development could be phenocopied by exogenous application of auxin. Jasmonic acid (JA) could not rescue the delay in anther dehiscence. These results suggest that auxin plays a key role in the timing of anther dehiscence, the dehiscence program is controlled by the somatic tissues of the anther, and auxin also regulates pistil development.  相似文献   

8.
Several processes during sexual reproduction in higher plants involve the movement of water between cells or tissues. Before flower anthesis, anther and pollen dehydration takes place before the release of mature pollen at dehiscence. Aquaporins represent a class of proteins that mediates the movement of water over cellular membranes. Aquaporins of the plasmamembrane PIP2 family are expressed in tobacco (Nicotiana tabacum) anthers and may therefore be involved in the movement of water in this organ. To gain more insight into the role these proteins may play in this process, we have analyzed their localization using immunolocalizations and generated plants displaying RNA interference of PIP2 aquaporins. Our results indicate that PIP2 protein expression is modulated during anther development. Furthermore, in tobacco PIP2 RNA interference plants, anther dehydration was slower, and dehiscence occurred later when compared with control plants. Together, our results suggest that aquaporins of the PIP2 class are required for efficient anther dehydration prior to dehiscence.  相似文献   

9.
10.
11.
12.
The time courses of 1-aminocyclopropane-1-carboxylic acid (ACC) content and ethylene production in developing anthers of petunia fertile and sterile lines and the effects of exogenously applied ethylene and an inhibitor of ethylene action, 2,5-norbornadiene (NBD), on male gametophyte development and germination were investigated. Fertile male gametophyte development was accompanied by two peaks of ethylene production by anther tissues. The first peak occurred during microspore development simultaneously with degeneration of both tapetal tissues and middle layers of the anther wall. The second peak coincided with maturation and dispersal of pollen grains. The mature pollen is characterized by a high ACC content (up to 300 nmol/g). Exogenously applied ethylene (1–100 ppm) induced degradation of gametophytic generation at the meiosis stage. NBD completely inhibited anther development at the early stages of its development and delayed anther dehiscence. In anther tissues of the petunia sterile line, tenfold higher ethylene production was observed at the meiosis stage compared to that in fertile male gametophytes and this correlated with degeneration of both microsporocytes and tapetal tissues. In vitro male gametophyte germination was accompanied by an increase of ethylene production, whereas NBD completely blocked male gametophyte germination. These results suggest that ethylene is an important factor in male gametophyte development and germination.  相似文献   

13.
A novel cell ablation strategy blocks tobacco anther dehiscence.   总被引:13,自引:0,他引:13       下载免费PDF全文
We utilized a new cell ablation strategy to ablate specific anther cell types involved in the dehiscence process. The tobacco TA56 gene promoter is active within the circular cell cluster, stomium, and connective regions of the anther at different developmental stages. We introduced a cytotoxic TA56/barnase gene into tobacco plants together with three different anticytotoxic barstar genes. The anticytotoxic barstar genes were used to protect subsets of anther cell types from the cytotoxic effects of the TA56/barnase gene. The chimeric barstar genes were fused with (1) the tobacco TP12 gene promoter that is active at high levels in most anther cell types; (2) the soybean lectin gene promoter that is active earlier in the connective, and at lower levels in the circular cell cluster and stomium, than is the TA56 promoter; and (3) the tobacco TA20 gene promoter that is active at high levels in most anther cell types but has a different developmental profile than does the TP12 promoter. Normal anther development and dehiscence occurred in plants containing the TA56/barnase and TP12/barstar genes, indicating that barstar protects diverse anther cell types from the cytotoxic effects of barnase. Anthers containing the TA56/barnase and lectin/barstar genes also developed normally but failed to dehisce because of extensive ablation of the circular cell cluster, stomium, and contiguous connective regions. Anthers containing the TA56/barnase and TA20/barstar genes failed to dehisce as well. However, only the stomium region was ablated in these anthers. The connective, circular cell cluster, and adjacent wall regions were protected from ablation by the formation of barnase/barstar complexes. We conclude that anther dehiscence at flower opening depends on the presence of a functional stomium region and that chimeric barnase and barstar genes containing promoters that are active in several overlapping cell types can be used for targeted cell ablation experiments.  相似文献   

14.
15.
Tzeng TY  Chen HY  Yang CH 《Plant physiology》2002,130(4):1827-1836
Two MADS box genes, Lily MADS Box Gene 2 (LMADS2) and Eustoma grandiflorum MADS Box Gene 1 (EgMADS1), with an extensive similarity to the petunia (Petunia hybrida) FLORAL BINDING PROTEIN 7/11 and Arabidopsis AGL11, were characterized from the lily (Lilium longiflorum) and lisianthus (Eustoma grandiflorum). The expression of LMADS2 and EgMADS1 mRNA was restricted to the carpel and was absent in the other flower organs or vegetative leaves. LMADS2 mRNA was detected mainly in ovules and weakly in style tissues of the carpel, whereas EgMADS1 mRNA was only expressed in the ovules. Transgenic Arabidopsis plants ectopically expressing LMADS2 or EgMADS1 showed similar novel phenotypes resembling 35S::AGAMOUS plants by significantly reducing plant size, flowering early, and losing inflorescence indeterminacy. Ectopic expression of these two genes also generated similar ap2-like flowers by inducing homeotic conversion of the sepals into carpel-like structures in which stigmatic papillae and ovules were observed. In addition, the petals were converted into stamen-like structures in the second whorl of 35S::LMADS2 and 35S::EgMADS1 transgenic Arabidopsis. Our data indicated that LMADS2 and EgMADS1 are putative D functional MADS box genes in lily and lisianthus with a function similar to C functional genes once ectopically expressed in Arabidopsis.  相似文献   

16.
17.
delayed dehiscence1 is an Arabidopsis T-DNA mutant in which anthers release pollen grains too late for pollination to occur. The delayed dehiscence1 defect is caused by a delay in the stomium degeneration program. The gene disrupted in delayed dehiscence1 encodes 12-oxophytodienoate reductase, an enzyme in the jasmonic acid biosynthesis pathway. We rescued the mutant phenotype by exogenous application of jasmonic acid and obtained seed set from previously male-sterile plants. In situ hybridization studies showed that during the early stages of floral development, DELAYED DEHISCENCE1 mRNA accumulated within all floral organs. Later, DELAYED DEHISCENCE1 mRNA accumulated specifically within the pistil, petals, and stamen filaments. DELAYED DEHISCENCE1 mRNA was not detected in the stomium and septum cells of the anther that are involved in pollen release. The T-DNA insertion in delayed dehiscence1 eliminated both DELAYED DEHISCENCE1 mRNA accumulation and 12-oxophytodienoate reductase activity. These experiments suggest that jasmonic acid signaling plays a role in controlling the time of anther dehiscence within the flower.  相似文献   

18.
Analysis of cDNA clones derived from hypoxic root mRNA of Petunia hybrida has revealed the existence of a third active gene encoding alcohol dehydrogenase in petunia. A combination of RT-PCR and ADH activity gels provide evidence for the selective tissue-specific expression of these three genes in multiple floral organs and hypoxically stressed roots. Expression of adh 1 in the plant appears to be restricted to immature pollen grains; the other two genes are expressed differentially in maternal anther tissues, stigma, petals, and hypoxic root. This work underscores the utility of RT-PCR for distinguishing expression patterns of closely related genes, clarifies the expression patterns exhibited by members of this gene family, and suggests multiple functions for the adh genes of petunia.  相似文献   

19.
Several processes during sexual reproduction in higher plants involve the movement of water between cells or tissues, such as occurs during dehiscence of the anther and hydration of the pollen grain after it is deposited on a stigma. To get more insight in these processes, a set of putative aquaporins was cloned and it was found that at least 15 are expressed in reproductive organs, which indicates that the control of water flow is important for reproduction. Functional studies in Xenopus laevis oocytes using two of the cDNAs showed that NtPIP2;1 is an efficient aquaporin, whereas NtPIP1;1 is not. Expression studies on RNA and protein levels showed that PIP1 and PIP2 genes are differently expressed in reproductive organs: PIP1 RNA accumulates in the stigma, and PIP1 and PIP2 RNA can be detected in most tissues of the anther.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号