首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research on protein oxidative damage may give insight into the nature of protein functions and pathological conditions. In this work, the oxidative damage of bovine insulin on Au electrode was investigated by cyclic voltammetry (CV). The experimental results show that there are two anodic peaks for the oxidative damage of bovine insulin, which arise from the oxidation of the exposed disulfide bond S? SCYS7A,CYS7B, forming sulfenic acid RSOH (1.20 V, vs. SCE), sulfinic acid RSO2H and sulfonic acid RSO3H (1.35 V, vs. SCE). These in vitro findings not only demonstrate the applicability of CV in simulating/evaluating the oxidative damage of nonredox proteins but also find two promising candidates (two anodic peaks) for measuring insulin.  相似文献   

2.
In this paper, the electrochemical behavior of myricetin on a gold nanoparticle/ethylenediamine/multi-walled carbon-nanotube modified glassy carbon electrode (AuNPs/en/MWCNTs/GCE) has been investigated. Myricetin effectively accumulated on the AuNPs/en/MWCNTs/GCE and caused a pair of irreversible redox peaks at around 0.408 V and 0.191 V (vs. Ag/AgCl) in 0.1 mol L−1 phosphate buffer solution (pH 3.5) for oxidation and reduction reactions respectively. The heights of the redox peaks were significantly higher on AuNPs/en/MWNTs/GCE compare with MWCNTs/GC and there was no peak on bare GC. The electron-transfer reaction for myricetin on the surface of electrochemical sensor was controlled by adsorption. Some parameters including pH, accumulation potential, accumulation time and scan rate have been optimized. Under the optimum conditions, anodic peak current was proportional to myricetin concentration in the dynamic range of 5.0×10−8 to 4.0×10−5 mol L−1 with the detection limit of 1.2×10−8 mol L−1. The proposed method was successfully used for the determination of myricetin content in tea and fruit juices.  相似文献   

3.
In this work, colloidal laponite nanoparticles were further expanded into the design of the third-generation biosensor. Direct electrochemistry of the complex molybdoenzyme xanthine oxidase (XnOx) immobilized on glassy carbon electrode (GCE) by laponite nanoparticles was investigated for the first time. XnOx/laponite thin film modified electrode showed only one pair of well defined and reversible cyclic voltammetric peaks attributed to XnOx–FAD cofactor at about −0.370 V vs. SCE (pH 5). The formal potential of XnOx–FAD/FADH2 couple varied linearly with the increase of pH in the range of 4.0–8.0 with a slope of −54.3 mV pH−1, which indicated that two-proton transfer was accompanied with two-electron transfer in the electrochemical reaction. More interestingly, the immobilized XnOx retained its biological activity well and displayed an excellent electrocatalytic performance to both the oxidation of xanthine and the reduction of nitrate. The electrocatalytic response showed a linear dependence on the xanthine concentration ranging from 3.9 × 10−8 to 2.1 × 10−5 M with a detection limit of 1.0 × 10−8 M based on S/N = 3.  相似文献   

4.
Electrochemically induced oxidative damage to DNA was studied with double-stranded calf thymus DNA immobilized directly on a gold electrode surface. Pre-polarization of the DNA-modified electrodes at +0.5 V versus Ag/AgCl reference electrode, in a free from DNA blank buffer solution, pH 7.4, allowed for subsequent detection of direct electrochemical oxidation of adsorbed on gold DNA, in the potential range from +0.7 to +0.8 V. The redox potential of the process corresponded to the potentials of the oxidation of guanine bases in DNA. It is shown that with increasing potential scan rate, v, the mechanism of electrochemical oxidation of DNA changes from the irreversible 4e oxidative damage of DNA at low v to reversible 1e oxidation at high v, keeping the electrochemical activity of the adsorbed DNA layer virtually the same.  相似文献   

5.
Ying  Xianbin  Guo  Kun  Chen  Wei  Gu  Yuan  Shen  Dongsheng  Zhou  Yuyang  Liang  Yuxiang  Wang  Yanfeng  Wang  Meizhen  Feng  Huajun 《Applied microbiology and biotechnology》2017,101(21):7997-8005

Both anode potentials and substrates can affect the process of biofilm formation in bioelectrochemical systems, but it is unclear who primarily determine the anode-respiring bacteria (ARB) community structure and composition. To address this issue, we divided microbial electrolysis cells (MECs) into groups, feeding them with different substrates and culturing them at various potentials. Non-turnover cyclic voltammetry indicated that the extracellular electron transfer components were uniform when feeding acetate, because the same oxidation peaks occurred at − 0.36 ± 0.01 and − 0.17 ± 0.01 V (vs. Ag/AgCl). Illumina MiSeq sequencing revealed that the dominating ARB was Geobacter, which did not change with different potentials. When the MECs were cultured with sucrose and mixed substrates, oxidation peak P3 (− 0.29 ± 0.015 V) occurred at potentials of − 0.29 and 0.01 V. This may be because of the appearance of Unclassified_AKYG597. In addition, oxidation peak P4 (− 0.99 ± 0.01 V) occurred at high and low potentials (0.61 and − 0.45 V, respectively), and the maximum current densities were far below those of the middle potentials. Illumina MiSeq sequencing showed that fermentation microorganisms (Lactococcus and Sphaerochaeta) dominated the biofilms. Consequently, substrate primarily determined the dominating ARB, and Geobacter invariably dominated the acetate-fed biofilms with potentials changed. Conversely, different potentials mainly affected fermentable substrate-fed biofilms, with dominating ARB turning into Unclassified_AKYG59.

  相似文献   

6.
Electrochemical oxidation of serotonin (SN) onto zinc oxide (ZnO)-coated glassy carbon electrode (GCE) results in the generation of redox mediators (RMs) that are strongly adsorbed on electrode surface. The electrochemical properties of zinc oxide-electrogenerated redox mediator (ZnO/RM) (inorganic/organic) hybrid film-coated electrode has been studied using cyclic voltammetry (CV). The scanning electron microscope (SEM), atomic force microscope (AFM), and electrochemical techniques proved the immobilization of ZnO/RM core/shell microparticles on the electrode surface. The GCE modified with ZnO/RM hybrid film showed two reversible redox peaks in acidic solution, and the redox peaks were found to be pH dependent with slopes of −62 and −60 mV/pH, which are very close to the Nernst behavior. The GCE/ZnO/RM-modified electrode exhibited excellent electrocatalytic activity toward the oxidations of ascorbic acid (AA), dopamine (DA), and uric acid (UA) in 0.1 M phosphate buffer solution (PBS, pH 7.0). Indeed, ZnO/RM-coated GCE separated the anodic oxidation waves of DA, AA, and UA with well-defined peak separations in their mixture solution. Consequently, the GCE/ZnO/RMs were used for simultaneous detection of DA, AA, and UA in their mixture solution. Using CV, calibration curves for DA, AA, and UA were obtained over the range of 6.0 × 10−6 to 9.6 × 10−4 M, 1.5 × 10−5 to 2.4 × 10−4 M, and 5.0 × 10−5 to 8 × 10−4 M with correlation coefficients of 0.992, 0.991, and 0.989, respectively. Moreover, ZnO/RM-modified GCE had good stability and antifouling properties.  相似文献   

7.
We report a novel electrochemical biosensor for direct discrimination of d- and l-mandelic acid (d- and l-MA) in aqueous medium. The glassy carbon electrode (GCE) surface was modified with reduced graphene oxide (rGO) and γ-globulin (GLOB). Electrochemical characterization of the modified electrodes was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode surfaces were also characterized by scanning electron microscopy. Electrochemical response of the prepared electrode (GCE/rGO/GLOB) for discrimination of d- and l-MA enantiomers was investigated by cyclic voltammetry and was compared with bare GCE in the concentration range of 2 to 10 mM. Whereas the bare GCE showed no electrochemical response for the MA enantiomers, the GCE/rGO/GLOB electrode exhibited direct and selective discrimination with different oxidation potential values of 1.47 and 1.71 V and weak reduction peaks at potential values of −1.37 and −1.48 V, respectively. In addition, electrochemical performance of the modified electrode was investigated in mixed solution of d- and l-MA. The results show that the produced electrode can be used as electrochemical chiral biosensor for MA.  相似文献   

8.
The electrochemistry of L-cysteine (CySH) in neutral aqueous media was investigated using carbon ionic liquid electrode (CILE). Comparative experiments were carried out using glassy carbon electrodes. At CILE, highly reproducible and well-defined cyclic voltammograms were obtained for l-cysteine with a peak potential of 0.49V vs Ag/AgCl, showing that CILE manifests a good electrocatalytic activity toward oxidation of l-cysteine. A linear dynamic range of 2-210microM with an experimental detection limit of 2microM was obtained. The method was successfully applied to the determination of l-cysteine in a sample of soya milk. Cysteine oxidation at CILE does not result in deactivation of the electrode surface. Mechanistic studies showed that, at CILE, the overall CySH oxidation is controlled by the oxidation of the CyS(-) electroactive species.  相似文献   

9.
Fang DH  Fan CH  Ji Q  Qi BX  Li J  Wang L 《Molecular biology reports》2012,39(6):6801-6809
Paraoxonase is an HDL-associated enzyme that plays a preventive role against oxidative stress, which is thought to contribute to cancer development. PON1 activity varies widely among individuals, which is in part related to two common nonsynonymous polymorphisms in the PON1 gene (Q192R and L55M). The polymorphisms in PON1 have been implicated in cancer risk. However, results from the studies to date have been conflicting. To clarify the association, a meta-analysis was performed for 7,073 cases and 9,520 controls from 25 published case–control studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of the association. Significant associations between PON1-L55M but not Q192R polymorphism and total cancer were observed from all the comparisons. In stratified analyses, PON1-55M allele was a risk factor for breast cancer. Similarly, increased risk was observed for prostate cancer (OR = 1.18, 95% CI: 1.01–1.36, P heterogeneity = 0.260) and Caucasian population (OR = 1.18, 95% CI: 1.02–1.38, P heterogeneity = 0.1) of the LM genotype, compared with the LL genotype. For PON1-Q192R polymorphism, PON1-192R allele was a decreased risk factor for cancer in the Asian group (RR vs QQ: OR = 0.61, 95% CI: 0.38–0.98, P heterogeneity = 0.268; QR vs QQ: OR = 0.71, 95% CI: 0.52–0.96, P heterogeneity = 0.130; RR + QR vs QQ: OR = 0.71, 95% CI: 0.53–0.95, P heterogeneity = 0.135). Although some modest bias could not be eliminated, this meta-analysis suggests that the PON1-55M allele is a risk factor for the development of cancer, in particular for breast cancer. Future studies with larger sample sizes are warranted to further evaluate these associations.  相似文献   

10.
Novel zinc oxide (ZnO) nanosheets and copper oxide (CuxO, CuO, and Cu2O) decorated polypyrrole (PPy) nanofibers (ZnO–CuxO–PPy) have been successfully fabricated for the simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The morphology and structure of ZnO–CuxO–PPy nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. Compared with the bare glassy carbon electrode (GCE), PPy/GCE, CuxO–PPy/GCE, and ZnO–PPy/GCE, ZnO–CuxO–PPy/GCE exhibits much higher electrocatalytic activities toward the oxidation of AA, DA, and UA with increasing peak currents and decreasing oxidation overpotentials. Cyclic voltammetry (CV) results show that AA, DA, and UA could be detected selectively and sensitively at ZnO–CuxO–PPy/GCE with peak-to-peak separation of 150 and 154 mV for AA–DA and DA–UA, respectively. The calibration curves for AA, DA, and UA were obtained in the ranges of 0.2 to 1.0 mM, 0.1 to 130.0 μM, and 0.5 to 70.0 μM, respectively. The lowest detection limits (signal/noise = 3) were 25.0, 0.04, and 0.2 μM for AA, DA, and UA, respectively. With good selectivity and sensitivity, the current method was applied to the determination of DA in injectable medicine and UA in urine samples.  相似文献   

11.
A new sensitive electrochemical sensor, a glassy carbon electrode modified with chemically cross-linked copper-complexed chitosan/multiwalled carbon nanotubes (Cu–CS/MWCNT/GCE), for rutin analysis was constructed. Experimental investigations of the influence of several parameters showed that the rutin can effectively accumulate on the surface of the Cu–CS/MWCNT/GCE, which accumulation caused a pair of well-defined redox peaks in the electrochemical signal when measurements were carried out in Britton–Robinson buffer solution (pH 3, 0.04 M). The surface of the Cu–CS/MWCNT/GCE was characterized by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry analysis. In a rutin concentration range of 0.05–100 μM and under optimized conditions, a linear relationship between the oxidation peak current of rutin and its concentration was obtained with a detection limit of 0.01 μM. The Cu–CS/MWCNT/GCE showed good selectivity, stability, and reproducibility. Moreover, the sensor was used to determine the presence of rutin in fruits with satisfactory results.  相似文献   

12.
Stress is a widespread phenomenon that all organisms must endure. Common in nature is oxidative stress, which can interrupt cell homeostasis to cause cell damage and may be derived from respiration or from environmental exposure through diet. As a result of the routine exposure from respiration, many organisms can mitigate the effects of oxidative stress, but less is known about responses to oxidative stress from other sources. Helicoverpa armigera is a major agricultural pest moth that causes significant damage to crops worldwide. Here, we examined the effects of oxidative stress on H. armigera by chronically exposing individuals to paraquat—a free radical producer—and measuring changes in development (weight, developmental rate, lifespan), and gene expression. We found that oxidative stress strongly affected development in H. armigera, with stressed samples spending more time as caterpillars than control samples (>24 vs. ~15 days, respectively) and therefore living longer overall. We found 1,618 up‐ and 761 down‐regulated genes, respectively, in stressed versus control samples. In the up‐regulated gene set, was an over‐representation of biological processes related to cuticle and chitin development, glycine metabolism, and oxidation–reduction. Oxidative stress clearly impacts physiology and biochemistry in H. armigera and the interesting finding of an extended lifespan in stressed individuals could demonstrate hormesis, the phenomenon whereby toxic compounds can actually be beneficial at low doses. Collectively, our findings provide new insights into physiological and gene expression responses to oxidative stress in invertebrates.  相似文献   

13.
The electrochemical behavior of L-cysteine (CySH) on platinum (Pt)/carbon nanotube (CNT) electrode was investigated by cyclic voltammetry. CNTs used in this study were grown directly on graphite disk by chemical vapor deposition. Pt was electrochemically deposited on the activated CNT/graphite electrode by electroreduction of Pt(IV) complex ion on the surface of CNTs. Among graphite, CNT/graphite, and Pt/CNT electrodes, improved electrochemical behavior of CySH oxidation was found with Pt/CNT electrode. On the other hand, a sensitive CySH sensor was developed based on Pt/CNT/graphite electrode. A linear calibration curve can be observed in the range of 0.5 microM-0.1 mM. The detection limit of the Pt/CNT electrode is 0.3 microM (signal/nose=3). Effects of pH, scan rate, and interference of other oxidizable amino acids were also investigated and discussed. Additionally, the reproducibility, stability, and applicability of the Pt/CNT electrode were evaluated.  相似文献   

14.
We recently identified dichlorobiphenyl (DCB) derivatives and 2-phenylbenzotriazole (PBTA) congeners as major mutagenic constituents of the waters of the Waka River and the Yodo River system in Japan, respectively. In this study we examined sister chromatid exchange (SCE) induction by two dichlorobiphenyl derivatives, 3,3′-dichlorobenzidine (DCB, 4,4′-diamino-3,3′-dichlorobiphenyl) and 4,4′-diamino-3,3′-dichloro-5-nitrobiphenyl (5-nitro-DCB); three PBTA congeners, 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1), 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2), and 2-[2-(acetylamino)amino]-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6); and water concentrates from the Waka River in Chinese hamster lung (CHL) cells. Concentration-dependent induction of SCE was found for all DCBs and PBTAs examined in the presence of S9 mix, and statistically significant increases of SCEs were detected at 2 μg per ml of medium or higher concentrations. SCE induction of MeIQx was examined to compare genotoxic activities of these water pollutants. According to the results, a ranking of the SCE-inducing potency of these compounds is the following: 5-nitro-DCB ≈ MeIQx > PBTA6 > PBTA-1 ≈ PBTA-2 > DCB.Water samples collected at a site at the Waka River showed concentration-related increases in SCEs at 6.25–18.75 ml-equivalent of river water per ml of medium with S9 mix. The concentrations of 5-nitro-DCB and DCB in the river water samples were from 2.5 to 19.4 ng/l and from 4100 to 18,900 ng/l, respectively. However, these chemicals showed only small contribution to SCE induction by the Waka River water.  相似文献   

15.
A new acridone derivative 2-nitroacridone (NAD) was synthesized in this paper, and it was found that NAD had excellent electrochemical activity on the glassy carbon electrode (GCE) with a couple reversible redox peaks at 0.051 V and 0.103 V, respectively. Voltammetry was used to investigate the electrochemical behavior of NAD and the interaction between NAD and salmon sperm DNA. In pH 4.0 phosphate buffer solution, the binding ratio between NAD and salmon sperm DNA was calculated to be 2:1 and the binding constant was 3.19 × 105 L/mol. A Chronic Myelogenous Leukemia (CML, Type b3a2) DNA biosensor was developed by immobilizing covalently single-stranded CML DNA fragments to a modified GCE. The surface hybridization of the immobilized single-stranded CML DNA fragment with its complementary DNA fragment was evidenced by electrochemical methods using NAD as a novel electrochemical indicator, with a detection limit of 6.7 × 10−9 M and a linear response range of 1.8 × 10−8 M to 9.1 × 10−8 M for CML DNA. Selective determination of complementary ssDNA was achieved using differential pulse voltammetry (DPV).  相似文献   

16.
We report here for the first time on the fabrication of highly dispersed PtM (M = Ru, Pd and Au) nanoparticles on composite film of multi-walled carbon nanotubes (MWNTs)–ionic liquid (IL, i.e., trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide) by using ultrasonic-electrodeposition method. The PtM nanoparticles are characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction, and we find that they are well-dispersed and exhibit alloy properties. Electrochemical experiments show that the PtRu(1:1, i.e., ratio of c(H2PtCl6)/c(RuCl3))–MWNT–IL nanocomposite modified glassy carbon electrode (PtRu(1:1)–MWNT–IL/GCE) has smaller electron transfer resistance and larger active surface area than PtRu(1:1)/GCE, PtRu(1:1)–MWNT/GCE, PtPd(1:1)–MWNT–IL/GCE and PtAu(1:1)–MWNT–IL/GCE. The PtRu(1:1)–MWNT–IL/GCE also presents stronger electrocatalytic activity toward the glucose oxidation than other electrodes. At −0.1 V, the electrode responds linearly to glucose up to 15 mM in neutral media, with a detection limit of 0.05 mM (S/N = 3) and detection sensitivity of 10.7 μA cm−2 mM−1. Meanwhile, the interference of ascorbic acid, uric acid, acetamidophenol and fructose is effectively avoided. The as-made sensor was applied to the determination of glucose in serum and urine samples. The results agreed closely with the results obtained by a hospital. This novel nonenzyme sensor thus has potential application in glucose detection.  相似文献   

17.
In this study, sulfonated graphene oxide (SGO) was synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). It was used to make Mb–SGO–Nafion composite films by coating myoglobin (Mb) on the glassy carbon electrodes (GCE). Positions of the Soret absorption bands suggested that Mb retained its native conformation in the films. Mb–SGO–Nafion film modified electrode showed a pair of well-defined and nearly reversible cyclic voltammetry peaks at around −0.39 V versus saturated calomel electrode (SCE) in pH 7.0 buffers, characteristic of heme Fe(III)/Fe(II) redox couples. Electrochemical parameters such as electron transfer rate constant (ks) and formal potential (Eo′) were estimated by fitting the data of square-wave voltammetry with nonlinear regression analysis. Experimental data demonstrated that the electron transfer between Mb and electrode was greatly facilitated and showed good electrocatalytic properties toward various substrates, such as H2O2 and NaNO2, with significant lowering of reduction overpotential.  相似文献   

18.
The sister chromatid exchange (SCE) frequency, the cell-cycle progression analysis, and the single cell gel electrophoresis technique (SCGE, comet assay) were employed as genetic end-points to investigate the geno- and citotoxicity exerted by dicamba and one of its commercial formulation banvel® (dicamba 57.71%) on Chinese hamster ovary (CHO) cells. Log-phase cells were treated with 1.0–500.0 μg/ml of the herbicides and harvested 24 h later for SCE and cell-cycle progression analyses. All concentrations assessed of both test compounds induced higher SCE frequencies over control values. SCEs increased in a non-dose-dependent manner neither for the pure compound (r = 0.48; P > 0.05) nor for the commercial formulation (r = 0.58, P > 0.05). For the 200.0 μg/ml and 500.0 μg/ml dicamba doses and the 500.0 μg/ml banvel® dose, a significant delay in the cell-cycle progression was found. A regression test showed that the proliferation rate index decreased as a function of either the concentration of dicamba (r = −0.98, P < 0.05) or banvel® (r = −0.88, P < 0.01) titrated into cultures in the 1.0–500.0 μg/ml dose-range. SCGE performed on CHO cells after a 90 min pulse-treatment of dicamba and banvel® within a 50.0–500.0 μg/ml dose-range revealed a clear increase in dicamba-induced DNA damage as an enhancement of the proportion of slightly damaged and damaged cells for all concentrations used (P < 0.01); concomitantly, a decrease of undamaged cells was found over control values (P < 0.01). In banvel®-treated cells, a similar overall result was registered. Dicamba induced a significant increase both in comet length and width over control values (P < 0.01) regardless of its concentration whereas banvel® induced the same effect only within 100.0–500.0 μg/ml dose range (P < 0.01). As detected by three highly sensitive bioassays, the present results clearly showed the capability of dicamba and banvel® to induce DNA and cellular damage on CHO cells.  相似文献   

19.
20.
Muscular dystrophies (MDs) such as Duchenne muscular dystrophy (DMD), sarcoglycanopathy (Sgpy) and dysferlinopathy (Dysfy) are recessive genetic neuromuscular diseases that display muscle degeneration. Although these MDs have comparable endpoints of muscle pathology, the onset, severity and the course of these diseases are diverse. Different mechanisms downstream of genetic mutations might underlie the disparity in these pathologies. We surmised that oxidative damage and altered antioxidant function might contribute to these differences. The oxidant and antioxidant markers in the muscle biopsies from patients with DMD (n = 15), Sgpy (n = 15) and Dysfy (n = 15) were compared to controls (n = 10). Protein oxidation and lipid peroxidation was evident in all MDs and correlated with the severity of pathology, with DMD, the most severe dystrophic condition showing maximum damage, followed by Sgpy and Dysfy. Oxidative damage in DMD and Sgpy was attributed to the depletion of glutathione (GSH) and lowered antioxidant activities while loss of GSH peroxidase and GSH-S-transferase activities was observed in Dysfy. Lower GSH level in DMD was due to lowered activity of gamma-glutamyl cysteine ligase, the rate limiting enzyme in GSH synthesis. Similar analysis in cardiotoxin (CTX) mouse model of MD showed that the dystrophic muscle pathology correlated with GSH depletion and lipid peroxidation. Depletion of GSH prior to CTX exposure in C2C12 myoblasts exacerbated oxidative damage and myotoxicity. We deduce that the pro and anti-oxidant mechanisms could be correlated to the severity of MD and might influence the dystrophic pathology to a different extent in various MDs. On a therapeutic note, this could help in evolving novel therapies that offer myoprotection in MD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号