首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background:

The goal of text mining is to make the information conveyed in scientific publications accessible to structured search and automatic analysis. Two important subtasks of text mining are entity mention normalization - to identify biomedical objects in text - and extraction of qualified relationships between those objects. We describe a method for identifying genes and relationships between proteins.

Results:

We present solutions to gene mention normalization and extraction of protein-protein interactions. For the first task, we identify genes by using background knowledge on each gene, namely annotations related to function, location, disease, and so on. Our approach currently achieves an f-measure of 86.4% on the BioCreative II gene normalization data. For the extraction of protein-protein interactions, we pursue an approach that builds on classical sequence analysis: motifs derived from multiple sequence alignments. The method achieves an f-measure of 24.4% (micro-average) in the BioCreative II interaction pair subtask.

Conclusion:

For gene mention normalization, our approach outperforms strategies that utilize only the matching of genes names against dictionaries, without invoking further knowledge on each gene. Motifs derived from alignments of sentences are successful at identifying protein interactions in text; the approach we present in this report is fully automated and performs similarly to systems that require human intervention at one or more stages.

Availability:

Our methods for gene, protein, and species identification, and extraction of protein-protein are available as part of the BioCreative Meta Services (BCMS), see http://bcms.bioinfo.cnio.es/.
  相似文献   

2.

Background  

Text-mining can assist biomedical researchers in reducing information overload by extracting useful knowledge from large collections of text. We developed a novel text-mining method based on analyzing the network structure created by symbol co-occurrences as a way to extend the capabilities of knowledge extraction. The method was applied to the task of automatic gene and protein name synonym extraction.  相似文献   

3.

Background  

The rapid growth of the amount of publicly available reports on biomedical experimental results has recently caused a boost of text mining approaches for protein interaction extraction. Most approaches rely implicitly or explicitly on linguistic, i.e., lexical and syntactic, data extracted from text. However, only few attempts have been made to evaluate the contribution of the different feature types. In this work, we contribute to this evaluation by studying the relative importance of deep syntactic features, i.e., grammatical relations, shallow syntactic features (part-of-speech information) and lexical features. For this purpose, we use a recently proposed approach that uses support vector machines with structured kernels.  相似文献   

4.

Background  

Manual curation of experimental data from the biomedical literature is an expensive and time-consuming endeavor. Nevertheless, most biological knowledge bases still rely heavily on manual curation for data extraction and entry. Text mining software that can semi- or fully automate information retrieval from the literature would thus provide a significant boost to manual curation efforts.  相似文献   

5.

Background  

The task of recognizing and identifying species names in biomedical literature has recently been regarded as critical for a number of applications in text and data mining, including gene name recognition, species-specific document retrieval, and semantic enrichment of biomedical articles.  相似文献   

6.

Background  

While biomedical text mining is emerging as an important research area, practical results have proven difficult to achieve. We believe that an important first step towards more accurate text-mining lies in the ability to identify and characterize text that satisfies various types of information needs. We report here the results of our inquiry into properties of scientific text that have sufficient generality to transcend the confines of a narrow subject area, while supporting practical mining of text for factual information. Our ultimate goal is to annotate a significant corpus of biomedical text and train machine learning methods to automatically categorize such text along certain dimensions that we have defined.  相似文献   

7.

Background  

Lately, there has been a great interest in the application of information extraction methods to the biomedical domain, in particular, to the extraction of relationships of genes, proteins, and RNA from scientific publications. The development and evaluation of such methods requires annotated domain corpora.  相似文献   

8.

Background:

Reliable information extraction applications have been a long sought goal of the biomedical text mining community, a goal that if reached would provide valuable tools to benchside biologists in their increasingly difficult task of assimilating the knowledge contained in the biomedical literature. We present an integrated approach to concept recognition in biomedical text. Concept recognition provides key information that has been largely missing from previous biomedical information extraction efforts, namely direct links to well defined knowledge resources that explicitly cement the concept's semantics. The BioCreative II tasks discussed in this special issue have provided a unique opportunity to demonstrate the effectiveness of concept recognition in the field of biomedical language processing.

Results:

Through the modular construction of a protein interaction relation extraction system, we present several use cases of concept recognition in biomedical text, and relate these use cases to potential uses by the benchside biologist.

Conclusion:

Current information extraction technologies are approaching performance standards at which concept recognition can begin to deliver high quality data to the benchside biologist. Our system is available as part of the BioCreative Meta-Server project and on the internet http://bionlp.sourceforge.net.
  相似文献   

9.

Background  

The rapid proliferation of biomedical text makes it increasingly difficult for researchers to identify, synthesize, and utilize developed knowledge in their fields of interest. Automated information extraction procedures can assist in the acquisition and management of this knowledge. Previous efforts in biomedical text mining have focused primarily upon named entity recognition of well-defined molecular objects such as genes, but less work has been performed to identify disease-related objects and concepts. Furthermore, promise has been tempered by an inability to efficiently scale approaches in ways that minimize manual efforts and still perform with high accuracy. Here, we have applied a machine-learning approach previously successful for identifying molecular entities to a disease concept to determine if the underlying probabilistic model effectively generalizes to unrelated concepts with minimal manual intervention for model retraining.  相似文献   

10.
The recognition of gene/protein names in literature is one of the pivotal steps in the processing of biological literatures for information extraction or data mining. We have compiled a lexicon of biomedical words (conserved patterns/ potential motifs) which has the combination of only 20 alphabets of amino acids. The remaining 6 letters of the English alphabets (B, J, O, U, X, Z) are treated as invalid amino acid characters (to our context), We have jumbled the 6 letters for the sake of usage and convenience and termed as ’JUZBOX‘ and these characters were filtered in the biomedical lexicon. Undoubtedly, the generation of biomedical words from protein sequence using JUZBOX have applications specific for functional annotation.

Availability

JUZBOX is available freely at http://www.spices.res.in/juzbox  相似文献   

11.

Background  

Bioinformatics tools for automatic processing of biomedical literature are invaluable for both the design and interpretation of large-scale experiments. Many information extraction (IE) systems that incorporate natural language processing (NLP) techniques have thus been developed for use in the biomedical field. A key IE task in this field is the extraction of biomedical relations, such as protein-protein and gene-disease interactions. However, most biomedical relation extraction systems usually ignore adverbial and prepositional phrases and words identifying location, manner, timing, and condition, which are essential for describing biomedical relations. Semantic role labeling (SRL) is a natural language processing technique that identifies the semantic roles of these words or phrases in sentences and expresses them as predicate-argument structures. We construct a biomedical SRL system called BIOSMILE that uses a maximum entropy (ME) machine-learning model to extract biomedical relations. BIOSMILE is trained on BioProp, our semi-automatic, annotated biomedical proposition bank. Currently, we are focusing on 30 biomedical verbs that are frequently used or considered important for describing molecular events.  相似文献   

12.

Background  

Advances in biotechnology and in high-throughput methods for gene analysis have contributed to an exponential increase in the number of scientific publications in these fields of study. While much of the data and results described in these articles are entered and annotated in the various existing biomedical databases, the scientific literature is still the major source of information. There is, therefore, a growing need for text mining and information retrieval tools to help researchers find the relevant articles for their study. To tackle this, several tools have been proposed to provide alternative solutions for specific user requests.  相似文献   

13.

Background  

Biomedical ontologies are critical for integration of data from diverse sources and for use by knowledge-based biomedical applications, especially natural language processing as well as associated mining and reasoning systems. The effectiveness of these systems is heavily dependent on the quality of the ontological terms and their classifications. To assist in developing and maintaining the ontologies objectively, we propose automatic approaches to classify and/or validate their semantic categories. In previous work, we developed an approach using contextual syntactic features obtained from a large domain corpus to reclassify and validate concepts of the Unified Medical Language System (UMLS), a comprehensive resource of biomedical terminology. In this paper, we introduce another classification approach based on words of the concept strings and compare it to the contextual syntactic approach.  相似文献   

14.

Background  

An increase in work on the full text of journal articles and the growth of PubMedCentral have the opportunity to create a major paradigm shift in how biomedical text mining is done. However, until now there has been no comprehensive characterization of how the bodies of full text journal articles differ from the abstracts that until now have been the subject of most biomedical text mining research.  相似文献   

15.

Background

Text mining is increasingly used in the biomedical domain because of its ability to automatically gather information from large amount of scientific articles. One important task in biomedical text mining is relation extraction, which aims to identify designated relations among biological entities reported in literature. A relation extraction system achieving high performance is expensive to develop because of the substantial time and effort required for its design and implementation. Here, we report a novel framework to facilitate the development of a pattern-based biomedical relation extraction system. It has several unique design features: (1) leveraging syntactic variations possible in a language and automatically generating extraction patterns in a systematic manner, (2) applying sentence simplification to improve the coverage of extraction patterns, and (3) identifying referential relations between a syntactic argument of a predicate and the actual target expected in the relation extraction task.

Results

A relation extraction system derived using the proposed framework achieved overall F-scores of 72.66% for the Simple events and 55.57% for the Binding events on the BioNLP-ST 2011 GE test set, comparing favorably with the top performing systems that participated in the BioNLP-ST 2011 GE task. We obtained similar results on the BioNLP-ST 2013 GE test set (80.07% and 60.58%, respectively). We conducted additional experiments on the training and development sets to provide a more detailed analysis of the system and its individual modules. This analysis indicates that without increasing the number of patterns, simplification and referential relation linking play a key role in the effective extraction of biomedical relations.

Conclusions

In this paper, we present a novel framework for fast development of relation extraction systems. The framework requires only a list of triggers as input, and does not need information from an annotated corpus. Thus, we reduce the involvement of domain experts, who would otherwise have to provide manual annotations and help with the design of hand crafted patterns. We demonstrate how our framework is used to develop a system which achieves state-of-the-art performance on a public benchmark corpus.  相似文献   

16.

Background  

Gene/protein recognition and normalization are important preliminary steps for many biological text mining tasks, such as information retrieval, protein-protein interactions, and extraction of semantic information, among others. Despite dedication to these problems and effective solutions being reported, easily integrated tools to perform these tasks are not readily available.  相似文献   

17.

Background  

Several mathematical and statistical methods have been proposed in the last few years to analyze microarray data. Most of those methods involve complicated formulas, and software implementations that require advanced computer programming skills. Researchers from other areas may experience difficulties when they attempting to use those methods in their research. Here we present an user-friendly toolbox which allows large-scale gene expression analysis to be carried out by biomedical researchers with limited programming skills.  相似文献   

18.

Background  

Progress in the life sciences cannot be made without integrating biomedical knowledge on numerous genes in order to help formulate hypotheses on the genetic mechanisms behind various biological phenomena, including diseases. There is thus a strong need for a way to automatically and comprehensively search from biomedical databases for related genes, such as genes in the same families and genes encoding components of the same pathways. Here we address the extraction of related genes by searching for densely-connected subgraphs, which are modeled as cliques, in a biomedical relational graph.  相似文献   

19.
BisoGenet: a new tool for gene network building,visualization and analysis   总被引:1,自引:0,他引:1  

Background  

The increasing availability and diversity of omics data in the post-genomic era offers new perspectives in most areas of biomedical research. Graph-based biological networks models capture the topology of the functional relationships between molecular entities such as gene, protein and small compounds and provide a suitable framework for integrating and analyzing omics-data. The development of software tools capable of integrating data from different sources and to provide flexible methods to reconstruct, represent and analyze topological networks is an active field of research in bioinformatics.  相似文献   

20.

Background  

Automatic semantic role labeling (SRL) is a natural language processing (NLP) technique that maps sentences to semantic representations. This technique has been widely studied in the recent years, but mostly with data in newswire domains. Here, we report on a SRL model for identifying the semantic roles of biomedical predicates describing protein transport in GeneRIFs – manually curated sentences focusing on gene functions. To avoid the computational cost of syntactic parsing, and because the boundaries of our protein transport roles often did not match up with syntactic phrase boundaries, we approached this problem with a word-chunking paradigm and trained support vector machine classifiers to classify words as being at the beginning, inside or outside of a protein transport role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号