首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the evolution of viviparity and of egg guarding in lizards and snakes in which three modes of reproduction can be described: oviparity without egg guarding, oviparity with egg guarding, and viviparity. All possible transitions of reproductive modes were detected in each taxon using Maddison's method. We then tested two specific hypotheses. First, egg guarding can be regarded as an alternative to viviparity. A relatively frequent association of egg guarding and viviparous species in the same taxon may be due to similar environmental conditions or species characteristics leading to two different solutions. Second, egg guarding may facilitate the evolution of viviparity. This hypothesis is supported by the high frequency of viviparous species in taxa containing egg guarding species and by a tendency for prolonged uterine retention of eggs in brooding squamates. Our analyses demonstrate that the first hypothesis is the best supported. Egg guarding and viviparity most often evolved independently. If a major benefit of egg guarding is the repulsion of potential predators, size is one of the most obvious morphological characters that should be correlated with the evolution of reproductive modes. The two reproductive traits were correlated to a reduction in body size for viviparous species and an increase in body size for egg guarding species. This could partly explain why the evolution of these reproductive modes seems almost antagonist.  相似文献   

2.
In molluscan taxa inhabiting marine environments oviparity and reproduction via planktonic larvae is predominant while incubation and viviparity is most frequently found in taxa inhabiting brackish or freshwater aquatic habitats. Brooding has evolved repeatedly and independently in several limnic taxa among Bivalvia and Gastropoda. However, among basommatophoran gastropods no such cases were yet known. We here report on a unique reproductive strategy involving brood care in the lacustrine freshwater limpet genus Protancylus, endemic to the ancient lakes on central Sulawesi (former Celebes), Indonesia, namely the Lake Poso and the Malili lake system, because this constitutes the first known case of this behaviour among the Basommatophora. Protancylus live exclusively as epizoans on those pachychilid gastropods of the viviparous genus Tylomelania, also a Sulawesi endemic species, that inhabit mostly soft substrates. We found that the two known species Protancylus pileolus from Lake Poso and P. adhaerens from the Malili lake system both retain gelatinous egg strings underneath their outer mantle, where up to 15 (mostly eight or nine) shelled juveniles are brooded. Nourishment is provided within the egg capsule only. Thus, brood care in Protancylus resembles the reproductive strategy found recently among pachychilid gastropods Jagora from the Philippines, but differs from euviviparous (i.e. matrotrophic) incubation among thiarid gastropods possessing a brood pouch with juveniles being nourished via a ‘pseudoplacenta’ in several taxa.  相似文献   

3.
Female reptiles with viviparous reproduction should leave space for their eggs that reach the maximum mass and volume in the oviducts. Is the evolution of viviparity accompanied by a relative increase in maternal abdomen size, thus allowing viviparous females to increase the amount of space for eggs? To answer this question, we compared morphology and reproductive output between oviparous and viviparous species using three pairs of lizards, which included two Eremias, two Eutropis and two Phrynocephalus species with different reproductive modes. The two lizards in each pair differed morphologically, but were similar in the patterns of sexual dimorphism in abdomen and head sizes and the rates at which reproductive output increased with maternal body and abdomen sizes. Postpartum females were heavier in viviparous species, suggesting that the strategy adopted by females to allocate energy towards competing demands differs between oviparous and viviparous species. Reproductive output was increased in one viviparous species, but decreased in the other two, as compared with congeneric oviparous species. The space requirement for eggs did not differ between oviparous and viviparous females in one species pair, but was greater in viviparous females in the other two pairs greater in relative clutch mass and relative litter mass. In the two Phrynocephalus species, viviparous females produced heavier clutches than did oviparous females not by increasing the relative size of the abdomen, but by being more full of eggs. In none of the three species pairs was the maternal abdomen size greater in the viviparous species after accounting for body size. Our data show that the evolution of viviparity is not accompanied by a relative increase in maternal abdomen size in lizards. Future work could usefully investigate other lineages of lizards to determine whether our results are generalisable to all lizards.  相似文献   

4.
Squamate reptiles are uniquely suited to study of evolution of reproductive mode and pattern of embryonic nutrition. Viviparous species have evolved from oviparous ancestors on numerous occasions, patterns of nutritional provision to embryos range widely from lecithotrophy, at one end of a continuum, to placentotrophy at the other, and structure and function of the maternal-embryonic relationship is highly constrained resulting in parallel evolutionary trajectories among taxa. Embryos of oviparous species primarily receive nourishment from yolk, but also mobilize a significant quantity of calcium from the eggshell. Most viviparous species also are predominantly lecithotrophic, yet all viviparous species are placentotrophic to some degree. Similarities in embryonic development and nutritional pattern between oviparous species and most viviparous species suggest that the pattern of nutrition of oviparous squamates is an exaptation for the evolution of viviparity and that placentotrophy and viviparity evolve concomitantly. The few species of squamates that rely substantially on placentotrophy have structural modifications of the interface between the embryo and mother that are interpreted as adaptations to enhance nutritional exchange. Recent studies have extended understanding of the diversity of embryonic nutrition and placental structure and have resulted in hypotheses for transitions in the evolution of placentotrophy, yet data are available for few species. Indirect tests of these hypotheses, by comparison of structural-functional relationships among clades in which viviparity has evolved, awaits further study of the reproductive biology of squamates.  相似文献   

5.
The evolution of viviparity is a key life‐history transition in vertebrates, but the selective forces favoring its evolution are not fully understood. With >100 origins of viviparity, squamate reptiles (lizards and snakes) are ideal for addressing this issue. Some evidence from field and laboratory studies supports the “cold‐climate” hypothesis, wherein viviparity provides an advantage in cold environments by allowing mothers to maintain higher temperatures for developing embryos. Surprisingly, the cold‐climate hypothesis has not been tested using both climatic data and phylogenetic comparative methods. Here, we investigate the evolution of viviparity in the lizard family Phrynosomatidae using GIS‐based environmental data, an extensive phylogeny (117 species), and recently developed comparative methods. We find significant relationships between viviparity and lower temperatures during the warmest (egg‐laying) season, strongly supporting the cold‐climate hypothesis. Remarkably, we also find that viviparity tends to evolve more frequently at tropical latitudes, despite its association with cooler climates. Our results help explain this and two related patterns that seemingly contradict the cold‐climate hypothesis: the presence of viviparous species restricted to low‐elevation tropical regions and the paucity of viviparous species at high latitudes. Finally, we examine whether viviparous taxa may be at higher risk of extinction from anthropogenic climate change.  相似文献   

6.
Pachychilidae are distributed in the tropical regions of the southern continents implying a Gondwanan history. In the present study, we investigate the phylogenetic relationships of the freshwater pachychilid gastropod Paracrostoma endemic to Southern India using molecular genetic and morphological data, including the first examination of soft body material of the type species, Paracrostoma huegelii . In addition, two new species, Paracrostoma tigrina sp. nov. and Paracrostoma martini sp. nov. , are described. Our systematic revision shows that former taxonomic concepts of Paracrostoma were misleading. We demonstrate that the monophyletic Paracrostoma is restricted to Southern India and nested within a clade of South-east Asian taxa composed of Brotia and Adamietta . The mitochondrial phylogeny is corroborated by the presence of a subhaemocoelic brood pouch that represents a synapomorphy shared by members of only this group of taxa from the Asian mainland and India. Thus, in contrast to several other zoogeographical model cases, our study suggests that pachychilid freshwater gastropods colonized India out of South-east Asia, probably after the collision of both landmasses during the Eocene. By contrast, a simple vicariance scenario involving the Mesozoic raft of originally Gondwanan elements on the drifting Madagascar–India plate and later colonization of Asia from India fails to explain this distributional pattern. Therefore, Pachychilidae do not follow the predictions of the vicariant biotic ferry hypothesis, which has been suggested for a number of other organisms. We conclude that the origins of the Indian biota are more complex and diverse than assumed under the standard Mesozoic vicariance model.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 627–651.  相似文献   

7.
By analysing key morphological characters (with emphasis on shell, radula and stomach anatomy) and a partial fragment of the mitochondrial 16S rRNA gene (alignment length 860 bp), we examined patterns of diversity and differentiation of a previously overlooked radiation of Madagascan pachychilid freshwater gastropods. These analyses resulted in the discovery of three new species in addition to the two species that were already recognized. The complex nomenclatural and taxonomic implications are discussed and the finding of a viviparous reproductive mode in at least one among otherwise oviparous species is reported. Using a mitochondrial phylogeny that includes all currently accepted pachychilid genera and a strict molecular clock approach, we address the historical biogeography of the Madagascan species with respect to vicariant versus dispersalist biogeographical models. Using two alternative calibrations that were previously suggested for other gastropods, the molecular clock tree suggested that the origin of the Pachychilidae dates back to no more than 50 Mya, whereas the origin of the Madagascan lineage is estimated to date to a period between 15.6–31.5 Mya. These estimates are approximately concurrent with the dating of colonization events in a number of other Madagascan animal taxa. The pachychilid radiation on Madagascar appears not to be older than 3–5 Mya. Thus, although the global patterns of pachychilid distribution have earlier been interpreted to suggest a Gondwanan origin of the family, the present study does not support this postulate. Neither the topology of the molecular phylogeny, nor the timing of events as suggested from a molecular clock were found to be congruent with a vicariance scenario within the framework of Gondwanan fragmentation during the Mesozoic but, instead, imply overseas dispersal during the Cenozoic. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 867–894.  相似文献   

8.
Many factors, both environmental and biotic, have been suggested to facilitate or hinder the evolution of viviparity (live-bearing) in reptiles. Viviparity has evolved recently within the Australian scincid lizard Lerista bougainvillii and the species includes oviparous, viviparous, and reproductively intermediate (with prolonged egg retention) populations; thus, it offers an exceptional opportunity to evaluate the validity of these hypotheses. We carried out such tests by (i) comparing environmental conditions over the geographic ranges occupied by oviparous, viviparous, and intermediate populations (to identify possible selective forces for the evolution of viviparity), and (ii) comparing morphological, reproductive and ecological traits of L. bougainvillii with those of other sympatric scincid species (to identify traits that may have predisposed this taxon to the evolution of viviparity). The areas occupied by viviparous L. bougainvillii are significantly colder than those occupied by both their intermediate and oviparous conspecifics, in accord with the “cold-climate” hypothesis for reptilian viviparity. Rainfall is similar over the ranges of the three forms. Climatic unpredictability (as assessed by the magnitude of year-to-year thermal variation) is lower for viviparous animals, in contradiction to published speculations. Comparison with 31 sympatric scincid species showed that L. bougainvillii is not atypical for most of the traits we measured (e.g., body size, clutch size, thermal preferenda and tolerances). However, oviparous L. bougainvillii do display several traits that have been suggested to facilitate the evolution of viviparity. For example, pregnancy does not reduce locomotor ability of females; the lizards are semi-fossorial; even the oviparous females produce only a single clutch of eggs per year; and they ovulate relatively late in summer, so that the time available for incubation is limited.  相似文献   

9.
Viviparity (live bearing) has evolved from egg laying (oviparity) in many lineages of lizards and snakes, apparently in response to occupancy of cold climates. Explanations for this pattern have focused on the idea that behaviorally thermoregulating (sun-basking) pregnant female reptiles can maintain higher incubation temperatures for their embryos than would be available in nests under the soil surface. This is certainly true at very high elevations, where only viviparous species occur. However, comparisons of nest and lizard temperatures at sites close to the upper elevational limit for oviparous reptiles (presumably, the selective environment where the transition from oviparity to viviparity actually occurs) suggest that reproductive mode has less effect on mean incubation temperatures than on the diel distribution of those temperatures. Nests of the oviparous scincid lizard Bassiana duperreyi showed smooth diel cycles of heating and cooling. In contrast, body temperatures of the viviparous scincid Eulamprus heatwolei rose abruptly in the morning, were high and stable during daylight hours, and fell abruptly at night. Laboratory incubation experiments mimicking these patterns showed that developmental rates of eggs and phenotypic traits of hatchling B. duperreyi were sensitive to this type of thermal variance as well as to mean temperature. Hence, diel distributions as well as mean incubation temperatures may have played an important role in the selective forces for viviparity. More generally, variances as well as mean values of abiotic factors may constitute significant selective forces on life-history evolution.  相似文献   

10.
11.
12.
13.
Pregnant females modify their thermoregulatory behaviour in many species of viviparous (live-bearing) reptiles, typically maintaining higher and more stable body temperatures at this time. Such modifications often have been interpreted as adaptations to viviparity, functioning to accelerate embryonic development and/or modify phenotypic traits of hatchlings. An alternative possibility is that similar maternal thermophily may be widespread also in oviparous species and if so, would be a pre-adaptation (rather than an adaptation) to viviparity. Because eggs are retained in utero for a significant proportion of development even in oviparous reptiles, maternal thermophily might confer similar advantages in oviparous as in viviparous taxa. Experimental trials on montane oviparous scincid lizards (Bassiana duperreyi) support the pre-adaptation hypothesis. First, captive females (both reproductive and non-reproductive) selected higher temperatures than males. Second, experimentally imposing thermal regimes on pregnant females significantly affected their oviposition dates and the phenotypic traits (body shape, running speed) of their hatchlings. Thus, as for many other behavioural correlates of pregnancy in viviparous reptiles, maternal thermophily likely may have already been present in the ancestral oviparous taxa that gave rise to present-day viviparous forms.  相似文献   

14.
The limnic bivalve genus Corbicula Megerle von Mühlfeld, 1811 is a hyper-invasive neozoon in North and South America as well as in Europe, where currently some taxa are rapidly extending their range. In addition to its extraordinarily invasive potential, the 'Asiatic clam' is remarkable for its recently discovered wide spectrum of reproductive strategies comprising oviparity, ovoviviparity and euviviparity. It renders Corbicula an ideal model for studying evolutionary transformations of reproductive features, in particular with respect to intrabranchial incubation (brooding) of embryos and shelled larvae in freshwater lineages. Based on rare material from Madagascar we here present evidence for prolonged incubation interpreted as being indicative of euviviparous reproduction in C. madagascariensis Smith, 1882. This mode is not only novel for corbiculids from the Ethiopian biogeographical region, but suggests — in combination with a mtDNA phylogeny — a more complicated pattern of the evolution of reproductive modes in corbiculids than previously assumed. We find an independent origin of viviparity and even euviviparity in the South American Neocorbicula Fischer, 1887 and the Afro-Asian Corbicula , representing a remarkable example of parallel evolution in New and Old World corbiculids.  相似文献   

15.
The aim of this review is to collate data relevant to understanding the evolution of viviparity in general, and complex placentae in particular. The wide range of reproductive modes exhibited by lizards provides a solid model system for investigating the evolution of viviparity. Within the lizards are oviparous species, viviparous species that have a very simple placenta and little nutrient uptake from the mother during pregnancy (lecithotrophic viviparity), through a range of species that have intermediate placental complexities and placental nutrient provision, to species that lay microlecithal eggs and most nutrients are provided across the placenta during development (obligate placentotrophy). In its commonest form, lecithotrophic viviparity, some uptake of water, inorganic ions and oxygen occurs from the mother to the embryo during pregnancy. In contrast, the evolution of complex placentae is rare, but has evolved at least five times. Where there is still predominantly a reliance on egg yolk, the omphaloplacenta seems to be paramount in the provision of nutrition to the embryo via histotrophy, whereas the chorioallantoic placenta is more likely involved in gas exchange. Reliance on provision of substantial organic nutrient is correlated with the regional specialisation of the chorioallantoic placenta to form a placentome for nutrient uptake, particularly lipids, and the further development of the gas exchange capabilities of the other parts of the chorioallantois.  相似文献   

16.
Reproductive mode has been remarkably labile among squamate reptiles and the evolutionary transition from oviparity to viviparity commonly has been accompanied by a shift in the pattern of embryonic nutrition. Structural specializations for placental transfer of nutrients during intrauterine gestation are highly diverse and many features of the extraembryonic membranes of viviparous species differ markedly from those of oviparous species. However, because of a high degree of evolutionary divergence between the species used for comparisons it is likely that the observed differences arose secondarily to the evolution of viviparity. We studied development of the extraembryonic membranes and placentation in the reproductively bimodal lizard Lacerta vivipara because the influence of reproductive mode on the structural/functional relationship between mothers and embryos can best be understood by studying the most recent evolutionary events. Lecithotrophic viviparity has evolved recently within this species and, although populations with different reproductive modes are allopatric, oviparous and viviparous forms interbreed in the laboratory and share many life history characteristics. In contrast to prior comparisons between oviparous and viviparous species, we found no differences in ontogeny or structure of the extraembryonic membranes between populations with different reproductive modes within L. vivipara. However, we did confirm conclusions from previous studies that the tertiary envelope of the egg, the eggshell, is much reduced in the viviparous population. These conclusions support a widely accepted model for the evolution of squamate placentation. We also found support for work published nearly 80 years ago that the pattern of development of the yolk sac of L. vivipara is unusual and that a function of a unique structure of squamate development, the yolk cleft, is hematopoiesis. The structure of the yolk sac splanchnopleure of L. vivipara is inconsistent with a commonly accepted model for amniote yolk sac function and we suggest that a long standing hypothesis that cells from the yolk cleft participate in yolk digestion requires further study.  相似文献   

17.
Viviparity (i.e., the bearing of live young) has evolved from oviparity (egg laying) independently in various major vertebrate lineages, and several transitional stages have been described. The transition from oviparity to viviparity requires the retention of fertilised eggs in the female reproductive tract. Caecilian amphibians (Gymnophiona) display a considerable diversity of reproductive modes, including oviparity and viviparity. Among amphibians, caecilians have also modified the process of internal fertilisation through a special intromittent organ, or phallus, in males. Here we report the oviposition of “embryonated” eggs ranging from various gastrula-to-neurula stages by female Ichthyophis cf. kohtaoensis (Ichthyophiidae) from North-eastern Thailand. In addition, we describe a copulation resulting in an oviposition of embryonated eggs. Our findings will have implications for the further understanding of the evolutionary reproductive biology of amphibians.  相似文献   

18.
Tomeurus gracilis is a species long considered pivotal in understanding the evolution of livebearing in atherinomorph fishes. Tomeurus gracilis is a zygoparous or embryoparous poeciliid: internal fertilization is followed by females laying fertilized eggs singly or retaining fertilized eggs until or near hatching. Tomeurus was hypothesized as the sister group of the viviparous poeciliids until it was proposed as a close relative of a derived viviparous poeciliid, Cnesterodon, hence nested among viviparous taxa rather than near the root of the tree. Here, we describe and compare reproductive morphological characters of the little‐known Tomeurus with those of representative atherinomorphs. In Tomeurus and Cnesterodon, sperm are packaged in naked sperm bundles, or spermatozeugmata, in a configuration considered here diagnostic of viviparous poeciliids. Testes are single and free sperm are stored in the ovary in both taxa in contrast to oviparous atherinomorphs in which testes are paired and sperm are not packaged and not stored in the ovary. Efferent ducts in Cnesterodon testes and other viviparous poeciliids have a PAS‐positive secretion demonstrating presence of a glycoprotein that inactivates sperm or prevents final sperm maturation. No PAS‐positive staining secretion was observed in Tomeurus or oviparous atherinomorphs. Tomeurus shares apomorphic reproductive characters, such as sperm bundle and testis morphology and a gonopodium, with viviparous poeciliids and plesiomorphic characters, such as a thick zona pellucida with filaments, with oviparous taxa. We do not postulate loss or reversal of viviparity in Tomeurus, and we corroborate its phylogenetic position as sister to the viviparous poeciliids. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
The cold-climate hypothesis for evolution of viviparity in squamates predicts a correlation between reproductive mode, altitude and latitude. I tested this prediction in horned lizards within a phylogenetic context. I first determined whether all viviparous species were monophyletic using Monte Carlo simulations. Secondly, I tested for presence of phylogenetic signal using randomization tests. Thirdly, I analysed relationships between reproductive mode and minimum, midpoint, and maximum altitudes and latitudes by computing conventional correlations and phylogenetically independent contrasts. Viviparous species do not form a monophyletic group suggesting viviparity evolved twice in the genus. Viviparity and altitude showed strong phylogenetic signal based on randomization tests and were significantly correlated, while latitude was not correlated with reproductive mode. This study partially supports the cold-climate model, but also suggests that altitude either may be a better predictor of cold temperatures or may be a surrogate for other selective factors important in the evolution of viviparity.  相似文献   

20.
The taxonomic distribution and evolution of viviparity in Diptera is critically reviewed. The phenomenon ranges from ovoviviparity (eggs deposited at an advanced stage of embryonic development; larva emerges immediately after deposition), through viviparity (larva hatches inside female before deposition) to pupiparity (offspring deposited as pupa). Some Diptera are known to be facultatively viviparous, which is hypothesized to be a step towards the evolution of obligate viviparity. Obligate viviparity is found to comprise unilarviparity (single large larva in maternal uterus) which evolved many times independently, the rare oligolarviparity (more than one but not more than 12 larvae) and multilarviparity (large numbers of developing eggs or larvae in uterus) which is typical for the two largest clades of viviparous Diptera. Unilarviparity is either lecithotrophic (developing larva nourished by yolk of egg) or pseudo-placental (larva nourished by glandular secretions of mother). Viviparity has clearly evolved on many separate occasions in Diptera. It is recorded in 22 families, and this review identifies at least 61 independent origins of viviparity. Six families appear to have viviparity in their ground-plan. Some families have a single evolution of viviparity, others multiple evolutions. Guimaraes' model for the evolution of viviparity in Diptera is tested against phylogenetic information and the adaptive significance of viviparity is reviewed in detail. Possible correlations with life-history parameters (coprophily, parasitism, breeding in ephemeral plant parts, malacophagy and adult feeding habits – especially haematophagy) are analysed critically, as are potential advantages (shorter larval life, less investment in yolk by mother, protection of vulnerable stages, better access to breeding substrates, predation on competitors). Morphological constraints, adaptations and exaptations are reviewed, including the provision of an incubation space for the egg(s), the positioning of the egg(s) in the uterus, and maternal glands. The main morphological adaptations include greater egg size, reduction of egg respiratory filaments, thinning of chorion, modified larval respiratory system and mouthparts, and instar skipping. Female morphology and behaviour is particularly strongly modified for viviparity. The terminalia are shortened, the vagina is more muscular and tracheated, and the ovaries of unilarviparous species have a reduced number of ovarioles with alternate ovulation. Many of the final conclusions are tentative, and a plea is made for more detailed morphological and experimental study of many of the viviparous species. Viviparity in Diptera provides a fascinating example of multiple parallel evolution, and a fertile field for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号