首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spongiform neurodegeneration is characterized by the appearance of vacuoles throughout the central nervous system. It has many potential causes, but the underlying cellular mechanisms are not well understood. Mice lacking the E3 ubiquitin ligase Mahogunin Ring Finger-1 (MGRN1) develop age-dependent spongiform encephalopathy. We identified an interaction between a “PSAP” motif in MGRN1 and the ubiquitin E2 variant (UEV) domain of TSG101, a component of the endosomal sorting complex required for transport I (ESCRT-I), and demonstrate that MGRN1 multimonoubiquitinates TSG101. We examined the in vivo consequences of loss of MGRN1 on TSG101 expression and function in the mouse brain. The pattern of TSG101 ubiquitination differed in the brains of wild-type mice and Mgrn1 null mutant mice: at 1 month of age, null mutant mice had less ubiquitinated TSG101, while in adults, mutant mice had more ubiquitinated, insoluble TSG101 than wild-type mice. There was an associated increase in epidermal growth factor receptor (EGFR) levels in mutant brains. These results suggest that loss of MGRN1 promotes ubiquitination of TSG101 by other E3s and may prevent its disassociation from endosomal membranes or cause it to form insoluble aggregates. Our data implicate loss of normal TSG101 function in endo-lysosomal trafficking in the pathogenesis of spongiform neurodegeneration in Mgrn1 null mutant mice.  相似文献   

2.
Mice lacking the E3 ubiquitin ligase mahogunin ring finger‐1 (MGRN1) have a pleiotropic phenotype that includes spongiform neurodegeneration, embryonic patterning defects, and dark fur due to a defect in pigment‐type switching. The only MGRN1 ubiquitination target identified to date is tumor susceptibility gene 101 (TSG101), a component of the endosomal trafficking machinery. Here, we show that MGRN1 also interacts with but does not ubiquitinate NEDD4, a HECT‐domain ubiquitin ligase involved in endosomal trafficking. Using transgenesis in mice, we demonstrate that pigment‐type switching likely requires MGRN1′s ubiquitin ligase activity but not its ability to bind TSG101 or NEDD4. This indicates that MGRN1‐dependent ubiquitination of an as‐yet unidentified target protein is required for agouti‐mediated melanocortin signaling.  相似文献   

3.
There is increasing evidence that ubiquitination of receptors provides an important endosomal sorting signal. Here we report that mammalian class E vacuolar protein-sorting (vps) proteins recognize ubiquitin. Both tumor susceptibility gene 101 (TSG101)/human VPS (hVPS)28 and hepatocyte growth factor receptor substrate (Hrs) cytosolic complexes bind ubiquitin-agarose. TSG101 and hVPS28 are localized to endosomes that contain internalized EGF receptor and label strongly for ubiquitinated proteins. Microinjection of anti-hVPS28 specifically retards EGF degradation and leads to endosomal accumulation of ubiquitin-protein conjugates. Likewise, depletion of TSG101 impairs EGF trafficking and causes dramatic relocalization of ubiquitin to endocytic compartments. Similar defects are found in cells overexpressing Hrs, further emphasizing the links between class E protein function, receptor trafficking, and endosomal ubiquitination.  相似文献   

4.
TSG101 (tumor susceptibility gene 101) is a multi-domain protein known to act in the cell nucleus, cytoplasm, and periplasmic membrane. Remarkably, TSG101, whose location within cells varies with the stage of the cell cycle, affects biological events as diverse as cell growth and proliferation, gene expression, cytokinesis, and endosomal trafficking. The functions of TSG101 additionally are recruited for viral and microvesicle budding and for intracellular survival of invading bacteria. Here we report that the TSG101 protein also interacts with and down-regulates the promoter of the p21CIP1/WAF1tumor suppressor gene, and identify a p21 locus and TSG101 domains that mediate this interaction. TSG101 deficiency in Saos-2 human osteosarcoma cells was accompanied by an increased abundance of p21 mRNA and protein and the retardation of cell proliferation. A cis-acting element in the p21 promoter that interacts with TSG101 and is required for promoter repression was located using chromatin immunoprecipitation (ChIP) analysis and p21-driven luciferase reporter gene expression, respectively. Additional analysis of TSG101 deletion mutants lacking specific domains established the role of the central TSG101 domains in binding to the p21 promoter and demonstrated the additional essentiality of the TSG101 C-terminal steadiness box (SB) in the repression of p21 promoter activity. Neither binding of TSG101 to the p21 promoter nor repression of this promoter required the TSG101 N-terminal UEV domain, which mediates the ubiquitin-recognition functions of TSG101 and its actions as a member of ESCRT endocytic trafficking complexes, indicating that regulation of the p21 promoter by TSG101 is independent of its role in such trafficking.  相似文献   

5.
Class E vacuolar protein sorting (vps) proteins are required for appropriate sorting of receptors within the yeast endocytic pathway, and most probably function in the biogenesis of multivesicular bodies. We have identified the mammalian orthologue of Vps28p as a 221- amino acid cytosolic protein that interacts with TSG101/mammalian VPS23 to form part of a multiprotein complex. Co-immunoprecipitation and cross-linking experiments demonstrated that hVPS28 and TSG101 interact directly and that binding requires structural information within the conserved C-terminal portion of TSG101. TSG101 and hVPS28 are predominantly cytosolic. However, when endosomal vacuolization was induced by the expression of a dominant-negative mutant of another class E vps protein, human VPS4, a portion of both TSG101 and hVPS28 translocated to the surface of these vacuoles. We conclude that TSG101 and its interacting components are directly involved in endosomal sorting.  相似文献   

6.
The Rab11-FIPs (Rab11-family interacting proteins; henceforth, FIPs) are a family of Rab11a/Rab11b/Rab25 GTPase effector proteins implicated in an assortment of intracellular trafficking processes. Through proteomic screening, we have identified TSG101 (tumor susceptibility gene 101), a component of the ESCRT-I (endosomal sorting complex required for transport) complex, as a novel FIP4-binding protein, which we find can also bind FIP3. We show that α-helical coiled-coil regions of both TSG101 and FIP4 mediate the interaction with the cognate protein, and that point mutations in the coiled-coil regions of both TSG101 and FIP4 abrogate the interaction. We find that expression of TSG101 and FIP4 mutants cause cytokinesis defects, but that the TSG101-FIP4 interaction is not required for localisation of TSG101 to the midbody/Flemming body during abscission. Together, these data suggest functional overlap between Rab11-controlled processes and components of the ESCRT pathway.  相似文献   

7.
Retrovirus budding is greatly stimulated by the presence of Gag sequences known as late or L domains. The L domain of human immunodeficiency virus type 1 (HIV-1) maps to a highly conserved Pro-Thr-Ala-Pro (PTAP) sequence in the p6 domain of Gag. We and others recently observed that the p6 PTAP motif interacts with the cellular endosomal sorting protein TSG101. Consistent with a role for TSG101 in virus release, we demonstrated that overexpressing the N-terminal, Gag-binding domain of TSG101 (TSG-5') suppresses HIV-1 budding by blocking L domain function. To elucidate the role of TSG101 in HIV-1 budding, we evaluated the significance of the binding between Gag and TSG-5' on the inhibition of HIV-1 release. We observed that a mutation in TSG-5' that disrupts the Gag/TSG101 interaction suppresses the ability of TSG-5' to inhibit HIV-1 release. We also determined the effect of overexpressing a panel of truncated TSG101 derivatives and full-length TSG101 (TSG-F) on virus budding. Overexpressing TSG-F inhibits HIV-1 budding; however, the effect of TSG-F on virus release does not require Gag binding. Furthermore, overexpression of the C-terminal portion of TSG101 (TSG-3') potently inhibits budding of not only HIV-1 but also murine leukemia virus. Confocal microscopy data indicate that TSG-F and TSG-3' overexpression induces an aberrant endosome phenotype; this defect is dependent upon the C-terminal, Vps-28-binding domain of TSG101. We propose that TSG-5' suppresses HIV-1 release by binding PTAP and blocking HIV-1 L domain function, whereas overexpressing TSG-F or TSG-3' globally inhibits virus release by disrupting the cellular endosomal sorting machinery. These results highlight the importance of TSG101 and the endosomal sorting pathway in virus budding and suggest that inhibitors can be developed that, like TSG-5', target HIV-1 without disrupting endosomal sorting.  相似文献   

8.
Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a component of the molecular machinery required for the biogenesis of specialized organelles and lysosomal targeting of cargoes via the endosomal to lysosomal trafficking pathway. BLOS1, one subunit of BLOC-1, is implicated in lysosomal trafficking of membrane proteins. We found that the degradation and trafficking of epidermal growth factor receptor (EGFR) were delayed in BLOS1 knockdown cells, which were rescued through BLOS1 overexpression. A key feature to the delayed EGFR degradation is the accumulation of endolysosomes in BLOS1 knockdown cells or BLOS1 knock-out mouse embryonic fibroblasts. BLOS1 interacted with SNX2 (a retromer subunit) and TSG101 (an endosomal sorting complex required for transport subunit-I) to mediate EGFR lysosomal trafficking. These results suggest that coordination of the endolysosomal trafficking proteins is important for proper targeting of EGFR to lysosomes.  相似文献   

9.
10.
The UEV domain of the TSG101 protein functions in both HIV-1 budding and the vacuolar protein sorting (VPS) pathway, where it binds ubiquitylated proteins as they are sorted into vesicles that bud into late endosomal compartments called multivesicular bodies (MVBs). TSG101 UEV-ubiquitin interactions are therefore important for delivery of both substrates and hydrolytic enzymes to lysosomes, which receive proteins via fusion with MVBs. Here, we report the crystal structure of the TSG101 UEV domain in complex with ubiquitin at 2.0 A resolution. TSG101 UEV contacts the Ile44 surface and an adjacent loop of ubiquitin through a highly solvated interface. Mutations that disrupt the interface inhibit MVB sorting, and the structure also explains how the TSG101 UEV can independently bind its ubiquitin and Pro-Thr/Ser-Ala-Pro peptide ligands. Remarkably, comparison with mapping data from other UEV and related E2 proteins indicates that although the different E2/UEV domains share the same structure and have conserved ubiquitin binding activity, they bind through very different interfaces.  相似文献   

11.
The protein network of HIV budding   总被引:38,自引:0,他引:38  
HIV release requires TSG101, a cellular factor that sorts proteins into vesicles that bud into multivesicular bodies (MVB). To test whether other proteins involved in MVB biogenesis (the class E proteins) also participate in HIV release, we identified 22 candidate human class E proteins. These proteins were connected into a coherent network by 43 different protein-protein interactions, with AIP1 playing a key role in linking complexes that act early (TSG101/ESCRT-I) and late (CHMP4/ESCRT-III) in the pathway. AIP1 also binds the HIV-1 p6(Gag) and EIAV p9(Gag) proteins, indicating that it can function directly in virus budding. Human class E proteins were found in HIV-1 particles, and dominant-negative mutants of late-acting human class E proteins arrested HIV-1 budding through plasmal and endosomal membranes. These studies define a protein network required for human MVB biogenesis and indicate that the entire network participates in the release of HIV and probably many other viruses.  相似文献   

12.
Prion diseases are rare but invariably fatal neurodegenerative disorders. They are associated with spongiform encephalopathy, a histopathology characterized by the presence of large, membrane-bound vacuolar structures in the neuropil of the brain. While the primary cause is recognized as conversion of the normal form of prion protein (PrPC) to a conformationally distinct, pathogenic form (PrPSc), the cellular pathways and mechanisms that lead to spongiform change, neuronal dysfunction and death are not known. Mice lacking the Mahogunin Ring Finger 1 (MGRN1) E3 ubiquitin ligase develop spongiform encephalopathy by 9 months of age but do not become ill. In cell culture, PrP aberrantly present in the cytosol was reported to interact with and sequester MGRN1. This caused endo-lysosomal trafficking defects similar to those observed when Mgrn1 expression is knocked down, implicating disrupted MGRN1-dependent trafficking in the pathogenesis of prion disease. As these defects were rescued by over-expression of MGRN1, we investigated whether reduced or elevated Mgrn1 expression influences the onset, progression or pathology of disease in mice inoculated with PrPSc. No differences were observed, indicating that disruption of MGRN1-dependent pathways does not play a significant role in the pathogenesis of transmissible spongiform encephalopathy.  相似文献   

13.
14.
To investigate the degradation mechanism of misfolded membrane proteins from the cell surface, we used mutant cystic fibrosis transmembrane conductance regulators (CFTRs) exhibiting conformational defects in post-Golgi compartments. Here, we show that the folding state of CFTR determines the post-endocytic trafficking of the channel. Although native CFTR recycled from early endosomes back to the cell surface, misfolding prevented recycling and facilitated lysosomal targeting by promoting the ubiquitination of the channel. Rescuing the folding defect or down-regulating the E1 ubiquitin (Ub)-activating enzyme stabilized the mutant CFTR without interfering with its internalization. These observations with the preferential association of mutant CFTRs with Hrs, STAM-2, TSG101, hVps25, and hVps32, components of the Ub-dependent endosomal sorting machinery, establish a functional link between Ub modification and lysosomal degradation of misfolded CFTR from the cell surface. Our data provide evidence for a novel cellular mechanism of CF pathogenesis and suggest a paradigm for the quality control of plasma membrane proteins involving the coordinated function of ubiquitination and the Ub-dependent endosomal sorting machinery.  相似文献   

15.
The cellular ESCRT pathway functions in membrane remodeling events that accompany endosomal protein sorting, cytokinesis, and enveloped RNA virus budding. In the last case, short sequence motifs (termed late domains) within human immunodeficiency virus type 1 (HIV-1) p6(Gag) bind and recruit two ESCRT pathway proteins, TSG101 and ALIX, to facilitate virus budding. We now report that overexpression of the HECT ubiquitin E3 ligase, NEDD4L/NEDD4-2, stimulated the release of HIV-1 constructs that lacked TSG101- and ALIX-binding late domains, increasing infectious titers >20-fold. Furthermore, depletion of endogenous NEDD4L inhibited the release of these crippled viruses and led to cytokinesis defects. Stimulation of virus budding was dependent upon the ubiquitin ligase activity of NEDD4L and required only the minimal HIV-1 Gag assembly regions, demonstrating that Gag has ubiquitin-dependent, cis-acting late domain activities located outside of the p6 region. NEDD4L stimulation also required TSG101 and resulted in ubiquitylation of several ESCRT-I subunits, including TSG101. Finally, we found that TSG101/ESCRT-I was required for efficient release of Mason-Pfizer monkey virus, which buds primarily by using a PPXY late domain to recruit NEDD4-like proteins. These observations suggest that NEDD4L and possibly other NEDD4-like proteins can ubiquitylate and activate ESCRT-I to function in virus budding.  相似文献   

16.
17.
The neuron-specific G protein-coupled receptor interacting scaffold protein (GISP) is a multidomain, brain-specific protein derived from the A-kinase anchoring protein-9 gene. We originally isolated GISP as an interacting partner for the GABA(B) receptor subunit GABA(B1). Here, we show that the protein tumour susceptibility gene 101 (TSG101), an integral component of the endosomal sorting machinery that targets membrane proteins for lysosomal degradation, also interacts with GISP. TSG101 co-immunoprecipitates with GISP from adult rat brain, and using GST pull-downs, we identified that the eighth coiled-coiled region of GISP is critical for TSG101 association. Intriguingly, although there is no direct interaction between GISP and the GABA(B2) subunit, their co-expression in HEK293 cells increases levels of GABA(B2). GISP also inhibits TSG101-dependent GABA(B2) down-regulation in human embryonic kidney 293 cells whereas over-expression of a mutant GISP lacking the TSG101 binding domain has no effect on GABA(B2) degradation. These data suggest that GISP can function as a negative regulator of TSG101-dependent lysosomal degradation of transmembrane proteins in neurons to promote receptor stability.  相似文献   

18.
The mammalian tumor susceptibility gene tsg101 encodes the homologue of Vps23p, a class E Vps protein essential for normal membrane trafficking in the late endosome/multivesicular body of yeast. Both proteins assemble into large (∼350 kDa) cytosolic protein complexes and we show that the yeast complex contains another class E Vps protein, Vps28p. tsg101 mutant cells exhibit defects in sorting and proteolytic maturation of the lysosomal hydrolase cathepsin D, as well as in the steady-state distribution of the mannose-6-phosphate receptor. Additionally, endocytosed EGF receptors that are normally sorted to the lysosome are instead rapidly recycled back to the cell surface in tsg101 mutant cells. We propose that tsg101 mutant cells are defective in the delivery of cargo proteins to late endosomal compartments. One consequence of this endosomal trafficking defect is the delayed down-regulation/degradation of activated cell surface receptors, resulting in prolonged signaling. This may contribute to the tumorigenic phenotype exhibited by the tsg101 mutant fibroblasts.  相似文献   

19.
Efficient human immunodeficiency virus type 1 (HIV-1) budding requires an interaction between the PTAP late domain in the viral p6(Gag) protein and the cellular protein TSG101. In yeast, Vps23p/TSG101 binds both Vps28p and Vps37p to form the soluble ESCRT-I complex, which functions in sorting ubiquitylated protein cargoes into multivesicular bodies. Human cells also contain ESCRT-I, but the VPS37 component(s) have not been identified. Bioinformatics and yeast two-hybrid screening methods were therefore used to identify four novel human proteins (VPS37A-D) that share weak but significant sequence similarity with yeast Vps37p and to demonstrate that VPS37A and VPS37B bind TSG101. Detailed studies produced four lines of evidence that human VPS37B is a Vps37p ortholog. 1) TSG101 bound to several different sites on VPS37B, including a putative coiled-coil region and a PTAP motif. 2) TSG101 and VPS28 co-immunoprecipitated with VPS37B-FLAG, and the three proteins comigrated together in soluble complexes of the correct size for human ESCRT-I ( approximately 350 kDa). 3) Like TGS101, VPS37B became trapped on aberrant endosomal compartments in the presence of VPS4A proteins lacking ATPase activity. 4) Finally, VPS37B could recruit TSG101/ESCRT-I activity and thereby rescue the budding of both mutant Gag particles and HIV-1 viruses lacking native late domains. Further studies of ESCRT-I revealed that TSG101 mutations that inhibited PTAP or VPS28 binding blocked HIV-1 budding. Taken together, these experiments define new components of the human ESCRT-I complex and characterize several TSG101 protein/protein interactions required for HIV-1 budding and infectivity.  相似文献   

20.
The Kaposi's sarcoma-associated herpes virus gene product K3 (KK3) subverts the MHC class I antigen presentation pathway by downregulating MHC class I from the plasma membrane. We now show that KK3 associates with MHC class I molecules and promotes ubiquitylation of class I after export from the endoplasmic reticulum. Ubiquitylation requires the KK3 N-terminal plant homeodomain and provides the signal for class I internalization at the plasma membrane. Once internalized, ubiquitylated MHC class I is targeted to the late endocytic pathway, where it is degraded. Depletion by small interfering RNA of TSG101, a ubiquitin enzyme 2 variant protein involved in late endosomal sorting, prevents class I degradation and preserves cell surface class I expression in KK3-expressing cells. These results suggest a mechanism by which the KK3-induced class I ubiquitylation provides a signal for both internalization and sorting to the late endosomal pathway for degradation. KK3 is the first viral gene product that subverts the trafficking of a host protein via the ubiquitin-dependent endosomal sorting machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号