首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The onset of neurodegenerations and nervous system injury both trigger cell signaling perturbations that lead to damage of neuronal circuits and synapic connections, as well as protective signaling that aims to halt disease onset. Here we review recent findings that support the role of the docosanoid mediator neuroprotectin D1 (NPD1) as an early response or sentinel during the initial phase of nervous system damage. NPD1 is derived from docosahexaenoic acid that is selectively concentrated and retained in the nervous system. The protein misfolding triggers the biosynthesis of NPD1 which in turn downregulates pathways that lead to cell death and changes the outcome to cell survival. Proteotoxic stress as a result of protein misfolding is a widespread event in many neurodegenerative diseases. Therefore, mechanisms and mediators such as NPD1 that curtail consequences of these events are of interest as leads in the search for novel preventive and or therapeutic approaches.  相似文献   

2.
Neurodegenerative diseases share two common features: enhanced oxidative stress and cellular inability to scavenge structurally damaged abnormal proteins. Pathogenesis of polyglutamine (poly(Q)) diseases involves increased protein misfolding, along with ubiquitin and chaperon protein-containing nuclear aggregates. In spinocerebellar ataxia, the brain and retina undergo degeneration. Neuroprotectin D1 (NPD1) is made on-demand in the nervous system and retinal pigment epithelial (RPE) cells in response to oxidative stress, which activates prosurvival signaling via regulation of gene expression and other processes. We hypothesized that protein misfolding-induced proteotoxic stress triggers NPD1 synthesis. We used ARPE-19 cells as a cellular model to assess stress due to ataxin-1 82Q protein expression and determine whether NPD1 prevents apoptosis. Ectopic ataxin-1 expression induced RPE cell apoptosis, which was abrogated by 100 nm docosahexaenoic acid, 10 ng/ml pigment epithelium-derived factor, or NPD1. Similarly, NPD1 was protective in neurons and primary human RPE cells. Furthermore, when ataxin-1 82Q was expressed in 15-lipoxygenase-1-deficient cells, apoptosis was greatly enhanced, and only NPD1 (50 nm) rescued cells from death. NPD1 reduced misfolded ataxin-1-induced accumulation of proapoptotic Bax in the cytoplasm, suggesting that NPD1 acts by preventing proapoptotic signaling pathways from occurring. Finally, NPD1 signaling interfered with ataxin-1/capicua repression of gene expression and decreased phosphorylated ataxin-1 in an Akt-independent manner, suggesting that NPD1 signaling modulates formation or stabilization of ataxin-1 complexes. These data suggest that 1) NPD1 synthesis is an early response induced by proteotoxic stress due to abnormally folded ataxin-1, and 2) NPD1 promotes cell survival through modulating stabilization of ataxin-1 functional complexes and pro-/antiapoptotic and inflammatory pathways.  相似文献   

3.
Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived lipid mediator, promotes survival in cells exposed to oxidative stress by inducing the activity of anti-inflammatory mediators and suppressing the expression of pro-inflammatory genes. Though retinal pigment epithelial (RPE) cells naturally produce NPD1 from DHA, investigating the mechanisms through which exogenous NPD1 induces cell survival is essential to assess mechanisms of actions and the potential of this lipid mediator for treatment of retinal degenerative diseases. The PI3K/Akt and mTOR/p70S6K pathways are responsible for supporting cell survival upon exposure to oxidative stress. In human ARPE-19 cells pretreated with NPD1 then exposed to varying concentrations of oxidative stress or repeated exposures to oxidative stress, Akt, mTOR, and p70S6K were phosphorylated to a greater extent and for a greater duration than cells not pretreated with NPD1. In addition to increased phosphorylation, a subsequent decreased rate of apoptosis was observed upon NPD1 treatment. Thus NPD1 bioactivity in RPE cells enhances activation of these pathways and promotes cell integrity and survival.  相似文献   

4.
The significance of the selective enrichment in omega-3 essential fatty acids in photoreceptors and synaptic membranes of the nervous system has remained, until recently, incompletely understood. While studying mechanisms of cell survival in neural degeneration, we discovered a docosanoid synthesized from unesterified docosahexaenoic acid (DHA) by a 15-lipoxygenase (15-LOX), which we called neuroprotectin D1 (NPD1; 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15E,19Z hexaenoic acid). This lipid mediator is a docosanoid because it is derived from the 22 carbon (22C) precursor DHA, unlike eicosanoids, which are derived from the 20 carbon (20C) arachidonic acid (AA) family member of essential fatty acids. We discovered that NPD1 is promptly made in response to oxidative stress, as a response to brain ischemia–reperfusion, and in the presence of neurotrophins. NPD1 is neuroprotective in experimental brain damage, in oxidative-stressed retinal pigment epithelial (RPE) cells, and in human brain cells exposed to amyloid-β (Aβ) peptides. We thus envision NPD1 as a protective sentinel, one of the very first defenses activated when cell homeostasis is threatened by imbalances in normal neural function. We provide here, in three sections, recent experimental examples that highlight the specificity and potency of NPD1 spanning beneficial bioactivity during initiation and early progression of neurodegeneration: (1) during retinal signal phototransduction, (2) during brain ischemia–reperfusion, and (3) in Alzheimer's disease (AD) and stressed human brain cell models of AD. From this experimental evidence, we conclude that DHA-derived NPD1 regulation targets upstream events of brain cell apoptosis, as well as neuro-inflammatory signaling, promoting and maintaining cellular homeostasis, and restoring neural and retinal cell integrity.  相似文献   

5.
Retinal degenerative diseases result in retinal pigment epithelial (RPE) and photoreceptor cell loss. These cells are continuously exposed to the environment (light) and to potentially pro-oxidative conditions, as the retina''s oxygen consumption is very high. There is also a high flux of docosahexaenoic acid (DHA), a PUFA that moves through the blood stream toward photoreceptors and between them and RPE cells. Photoreceptor outer segment shedding and phagocytosis intermittently renews photoreceptor membranes. DHA is converted through 15-lipoxygenase-1 into neuroprotectin D1 (NPD1), a potent mediator that evokes counteracting cell-protective, anti-inflammatory, pro-survival repair signaling, including the induction of anti-apoptotic proteins and inhibition of pro-apoptotic proteins. Thus, NPD1 triggers activation of signaling pathway/s that modulate/s pro-apoptotic signals, promoting cell survival. This review provides an overview of DHA in photoreceptors and describes the ability of RPE cells to synthesize NPD1 from DHA. It also describes the role of neurotrophins as agonists of NPD1 synthesis and how photoreceptor phagocytosis induces refractoriness to oxidative stress in RPE cells, with concomitant NPD1 synthesis.  相似文献   

6.
Neuroprotectin D1 (NPD1) is a stereoselective mediator derived from the omega-3 essential fatty acid docosahexaenoic acid (DHA) with potent inflammatory resolving and neuroprotective bioactivity. NPD1 reduces Aβ42 peptide release from aging human brain cells and is severely depleted in Alzheimer's disease (AD) brain. Here we further characterize the mechanism of NPD1's neurogenic actions using 3xTg-AD mouse models and human neuronal-glial (HNG) cells in primary culture, either challenged with Aβ42 oligomeric peptide, or transfected with beta amyloid precursor protein (βAPP)(sw) (Swedish double mutation APP695(sw), K595N-M596L). We also show that NPD1 downregulates Aβ42-triggered expression of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) and of B-94 (a TNF-α-inducible pro-inflammatory element) and apoptosis in HNG cells. Moreover, NPD1 suppresses Aβ42 peptide shedding by down-regulating β-secretase-1 (BACE1) while activating the α-secretase ADAM10 and up-regulating sAPPα, thus shifting the cleavage of βAPP holoenzyme from an amyloidogenic into the non-amyloidogenic pathway. Use of the thiazolidinedione peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone, the irreversible PPARγ antagonist GW9662, and overexpressing PPARγ suggests that the NPD1-mediated down-regulation of BACE1 and Aβ42 peptide release is PPARγ-dependent. In conclusion, NPD1 bioactivity potently down regulates inflammatory signaling, amyloidogenic APP cleavage and apoptosis, underscoring the potential of this lipid mediator to rescue human brain cells in early stages of neurodegenerations.  相似文献   

7.
Neuroprotectin D1 (NPD1), a docosahexaenoic acid-derived autacoid, is an endogenous neuroprotective and anti-inflammatory mediator that is generated in the retina and brain. The effects of exogenous NPD1 on retinal ganglion cell (RGC) apoptosis and the role of 12/15-lipoxygenase (Alox15) in retina were evaluated after optic nerve transection (ONT). Treatment with NPD1 was associated with significant protection against RGC death. The percentage of RGC survival in NPD1-treated group was 30% at 2 weeks after ONT as compared with 12% of RGC survival in the ONT group without treatment. Endogenous NPD1 was a predominant lipid autocoid in uninjured and axotomized retinas. Alox15 mRNA expression was upregulated in retinas following ONT suggesting that amplification of 12/15-lipoxygenase (12/15-LOX) may represent a neuroprotective response in the rat retina. The density of RGCs was higher in the normal retina of 12/15-LOX-deficient mice as compared with congenic controls. Hence, the resident NPD1 has a potential role in the physiological and pathophysiological responses of the retina.  相似文献   

8.
Lipid signaling in neural plasticity, brain repair, and neuroprotection   总被引:13,自引:0,他引:13  
The extensive networking of the cells of the nervous system results in large cell membrane surface areas. We now know that neuronal membranes contain phospholipid pools that are the reservoirs for the synthesis of specific lipid messengers on neuronal stimulation or injury. These messengers in turn participate in signaling cascades that can either promote neuronal injury or neuroprotection. Prostaglandins are synthesized as a result of cyclooxygenase activity. In the first step of the arachidonic acid cascade, the short-lived precursor, prostaglandin H2, is synthesized. Additional steps in the cascade result in the synthesis of an array of prostaglandins, which participate in numerous physiological and neurological processes. Our laboratory recently reported that the membrane polyunsaturated fatty acid, docosahexaenoic acid, is the precursor of oxygenation products now known as the docosanoids, some of which are powerful counter-proinflammatory mediators. The mediator 10,17S-docosatriene (neuroprotectin D1, NPD1) counteracts leukocyte infiltration, NF-κ activation, and proinflammatory gene expression in brain ischemia-reperfusion and is an apoptostatic mediator, potently counteracting oxidative stress-triggered apoptotic DNA damage in retinal pigment epithelial cells. NPD1 also upregulates the anti-apoptotic proteins Bcl-2 and Bcl-xL and decreases pro-apoptotic Bax and Bad expression. Another biologically active messenger derived from membrane phospholipids in response to synaptic activity is platelet-activating factor (PAF). The tight regulation of the balance between synthesis (via phospholipases) and degradation (via acetylhydrolases) of PAF modulates the functions of this lipid messenger. Under pathological conditions, this balance is tipped, and PAF becomes a proinflammatory mediator and neurotoxic agent. The newly discovered docosahexaenoic acid signaling pathways, as well as other lipid messengers related to synaptic activation, may lead to the clarification of clinical issues relevant to stroke, age-related macular degeneration, spinal cord injury, Alzheimer’s disease, and other diseases that include neuroinflammatory components.  相似文献   

9.
The identification of neuroprotectin D1 (NPD1), a biosynthetic product of docosahexaenoic acid (DHA), in brain and retina as well as the characterization of its bioactivity, is generating a renewed interest in the functional role and pathophysiological significance of omega-3 fatty acids in the central nervous system. Neurotrophins, particularly pigment epithelium-derived factor (PEDF), induce NPD1 synthesis and its polarized apical secretion, implying paracrine and autocrine bioactivity of this lipid mediator. Also, DHA and PEDF synergistically activate NPD1 synthesis and antiapoptotic protein expression and decreased proapoptotic Bcl-2 protein expression and caspase 3 activation during oxidative stress. In experimental stroke, endogenous NPD1 synthesis was found to be upregulated, and the infusion of the lipid mediator into the brain under these conditions revealed neuroprotective bioactivity of NPD1. The hippocampal CA1 region from Alzheimer's disease (AD) patients (rapidly sampled) shows a major reduction in NPD1. The interplay of DHA-derived neuroprotective signaling aims to counteract proinflammatory, cell-damaging events triggered by multiple, converging cytokine and amyloid peptide factors, as in the case of AD. Generation of NPD1 from DHA thereby appears to redirect cellular fate toward successful preservation of retinal pigment epithelial (RPE)-photoreceptor cell integrity and brain cell aging. The Bcl-2 pro- and antiapoptotic proteins, neurotrophins, and NPD1, lie along a cell fate-regulatory pathway whose component members are highly interactive, and have potential to function cooperatively in cell survival. Agents that stimulate NPD1 biosynthesis, NPD1 analogs, or dietary regimens may be useful as new preventive/therapeutic strategies for neurodegenerative diseases.  相似文献   

10.
Docosahexaenoic acid (DHA), an omega-3 fatty acid family member, is obtained by diet or synthesized from dietary essential omega-3 linolenic acid and delivered systemically to the choriocapillaris, from where it is taken up by the retinal pigment epithelium (RPE). DHA is then transported to the inner segments of photoreceptors, where it is incorporated in phospholipids during the biogenesis of outer segment disk and plasma membranes. As apical photoreceptor disks are gradually shed and phagocytized by the RPE, DHA is retrieved and recycled back to photoreceptor inner segments for reassembly into new disks. Under uncompensated oxidative stress, the docosanoid neuroprotectin D1 (NPD1), a potent mediator derived from DHA, is formed by the RPE and displays its bioactivity in an autocrine and paracrine fashion. The purpose of this study was to determine whether photoreceptors have the ability to synthesize NPD1, and whether or not this lipid mediator exerts bioactivity on these cells. For this purpose, 661W cells (mouse-derived photoreceptor cells) were used. First we asked whether these cells have the ability to form NPD1 by incubating cells with deuterium (d4)-labeled DHA exposed to dark and bright light treatments, followed by LC–MS/MS-based lipidomic analysis to identify and quantify d4-NPD1. The second question pertains to the potential bioactivity of these lipids. Therefore, cells were incubated with 9-cis-retinal in the presence of bright light that triggers cell damage and death. Following 9-cis-retinal loading, DHA, NPD1, or vehicle were added to the media and the 661W cells maintained either in darkness or under bright light. DHA and NPD1 were then quantified in cells and media. Regardless of lighting conditions, 661W cells acquired DHA from the media and synthesized 4–9 times as much d4-NPD1 under bright light treatment in the absence and presence of 9-cis-retinal compared to cells in darkness. Viability assays of 9-cis-retinal-treated cells demonstrated that 34 % of the cells survived without DHA or NPD1. However, after bright light exposure, DHA protected 23 % above control levels and NPD1 increased protection by 32 %. In conclusion, the photoreceptor cell line 661W has the capability to synthesize NPD1 from DHA when under stress, and, in turn, can be protected from stress-induced apoptosis by DHA or NPD1, indicating that photoreceptors effectively contribute to endogenous protective signaling mediated by NPD1 under stressful conditions.  相似文献   

11.
Deficiency in docosahexaenoic acid (DHA) is associated with impaired visual and neurological postnatal development, cognitive decline, macular degeneration, and other neurodegenerative diseases. DHA is an omega-3 polyunsaturated fatty acyl chain concentrated in phospholipids of brain and retina, with photoreceptor cells displaying the highest content of DHA of all cell membranes. The identification and characterization of neuroprotectin D1 (NPD1, 10R, 17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid) contributes in understanding the biological significance of DHA. In oxidative stress-challenged human retinal pigment epithelial (RPE) cells, human brain cells, or rat brains undergoing ischemia-reperfusion, NPD1 synthesis is enhanced as a response for sustaining homeostasis. Thus, neurotrophins, Aβ peptide 42 (Aβ42), calcium ionophore A23187, interleukin (IL)-1β, or DHA supply enhances NPD1 synthesis. NPD1, in turn, up-regulates the antiapoptotic proteins of the Bcl-2 family and decreases the expression of proapoptotic Bcl-2 family members. Moreover, NPD1 inhibits IL-1β-stimulated expression of cyclooxygenase-2 (COX-2). Because both RPE and photoreceptors are damaged and then die in retinal degenerations, elucidating how NPD1 signaling contributes to retinal cell survival may lead to a new understanding of disease mechanisms. In human neural cells, DHA attenuates amyloid-β (Aβ) secretion, resulting in concomitant formation of NPD1. NPD1 was found to be reduced in the Alzheimer's disease (AD) cornu ammonis region 1 (CA1) hippocampal region, but not in other areas of the brain. The expression of key enzymes for NPD1 biosynthesis, cytosolic phospholipase A2 (cPLA2), and 15-lipoxygenase (15-LOX) was found altered in the AD hippocampal CA1 region. NPD1 repressed Aβ42-triggered activation of pro-inflammatory genes and upregulated the antiapoptotic genes encoding Bcl-2, Bcl-xl, and Bfl-1(A1) in human brain cells in culture. Overall, these results support the concept that NPD1 promotes brain and retina cell survival via the induction of antiapoptotic and neuroprotective gene-expression programs that suppress Aβ42-induced neurotoxicity and other forms of cell injury, which in turn fosters homeostasis during development in aging, as well as during the initiation and progression of neurodegenerative diseases.  相似文献   

12.
Retinal pigment epithelial (RPE) cells, derived from the neuroectoderm, biosynthesize the novel lipid mediator neuroprotectin D1 (NPD1) from docosahexaenoic acid (DHA) in response to oxidative stress or to neurotrophins, and in turn, elicits cytoprotection. Here, we report the identification of a 16,17-epoxide-containing intermediate in the biosynthesis of NPD1 in ARPE-19 cells from 17S-hydro-(peroxy)-docosahexaenoic acid. We prepared and isolated tritium-labeled NPD1 ([3H]-NPD1) and demonstrate specific and high-affinity stereoselective binding to ARPE-19 cells (Kd=31.3±13.1 pmol/mg of cell protein). The stereospecific NPD1 interactions with these cells in turn gave potent protection against oxidative stress-induced apoptosis, and other structurally related compounds were weak competitors of NPD1 specific binding. This [3H]-NPD1/PD1 also displayed specific and selective high affinity binding with isolated human neutrophils (Kd~25 nM). Neither resolvin E1 nor lipoxin A4 competed for [3H]-NPD1/PD1 specific binding with human neutrophils. Together, these results provide evidence for stereoselective specific binding of NPD1/PD1 with retinal pigment epithelial cells as well as human neutrophils. Moreover, they suggest specific receptors for this novel mediator in both the immune and visual systems.  相似文献   

13.
During the past decade, hypotheses concerning the pathogenesis of most neurodegenerative diseases have been dominated by the notion that the aggregation of specific proteins and subsequent formation of cytoplasmic and extracellular lesions represent a harbinger of neuronal dysfunction and death. As such, in Alzheimer's disease, phosphorylated tau protein, the major component of neurofibrillary tangles, is considered a central mediator of disease pathogenesis. We challenge this classic notion by proposing that tau phosphorylation represents a compensatory response mounted by neurons against oxidative stress and serves a protective function. This novel concept, which can also be applied to protein aggregates in other neurodegenerative diseases, opens a new window of knowledge with broad implications for both the understanding of mechanisms underlying disease pathophysiology and the design of new therapeutic strategies.  相似文献   

14.
The mediator neuroprotectin D1 (NPD1) is an enzymatic derivative of the omega-3 essential fatty acid docosahexaenoic acid. NPD1 stereoselectively and specifically binds to human retinal pigment epithelium (RPE) cells and neutrophils. In turn, this lipid mediator induces dephosphorylation of Bcl-xL in a PP2A-dependent manner and induces PI3K/Akt and mTOR/p70S6K pathways leading to RPE cell survival during oxidative stress-induced apoptosis. As a proof of principle of its systemic in vivo bioactivity, NPD1 attenuates laser-induced choroidal neovascularization in mice. Using human neural cells transfected with amyloid precursor protein (APP)sw (Swedish double mutation APP695sw, K595N, M596L), NPD1 was shown to regulate secretase-mediated production of Aβ peptide, downregulates pro-inflammatory gene expression, and promotes cell survival. In human neural cells overexpressing beta-amyloid precursor protein (βAPP), the lipid mediator suppressed Aβ42 shedding by downregulating β-secretase (BACE1) while activating the α-secretase (ADAM10), thus shifting the βAPP cleavage from the noxious amyloidogenic pathway into a non-amyloidogenic, neurotrophic pathway. Furthermore, downregulation of Aβ42 peptide release by NPD1 may be dependent upon PPARγ activation. In conclusion, NPD1 exhibits anti-inflammatory, anti-amyloidogenic, and anti-apoptotic bioactivities in human neural cells in part via PPARγ signaling and through the targeting of α- and β-secretase systems.  相似文献   

15.
16.
As glucocorticoid resistance (GCR) and the concomitant burden pose a worldwide problem, there is an urgent need for a more effective glucocorticoid therapy, for which insights into the molecular mechanisms of GCR are essential. In this study, we addressed the hypothesis that TNFα, a strong pro-inflammatory mediator in numerous inflammatory diseases, compromises the protective function of the glucocorticoid receptor (GR) against TNFα-induced lethal inflammation. Indeed, protection of mice by dexamethasone against TNFα lethality was completely abolished when it was administered after TNFα stimulation, indicating compromised GR function upon TNFα challenge. TNFα-induced GCR was further demonstrated by impaired GR-dependent gene expression in the liver. Furthermore, TNFα down-regulates the levels of both GR mRNA and protein. However, this down-regulation seems to occur independently of GC production, as TNFα also resulted in down-regulation of GR levels in adrenalectomized mice. These findings suggest that the decreased amount of GR determines the GR response and outcome of TNFα-induced shock, as supported by our studies with GR heterozygous mice. We propose that by inducing GCR, TNFα inhibits a major brake on inflammation and thereby amplifies the pro-inflammatory response. Our findings might prove helpful in understanding GCR in inflammatory diseases in which TNFα is intimately involved.  相似文献   

17.
The integrity of the retinal pigment epithelial (RPE) cell is essential for the survival of rod and cone photoreceptor cells. Several stressors, including reactive oxygen species, trigger apoptotic damage in RPE cells preceded by an anti-inflammatory, pro-survival response, the formation of neuroprotectin D1 (NPD1), an oxygenation product derived from the essential omega-3 fatty acid family member docosahexaenoic acid. To define the ability of NPD1 and other endogenous novel lipid mediators in cell survival, we generated a stable knockdown human RPE (ARPE-19) cell line using short hairpin RNA to target 15-lipoxygenase-1. The 15-lipoxygenase-1-deficient cells exhibited 30% of the protein expression, and 15-lipoxygenase-2 remained unchanged, as compared with an ARPE-19 cell line control established using nonspecific short hairpin RNA transfected cells. NPD1 synthesis was stimulated by tumor necrosis factor α/H2O2-mediated oxidative stress in nonspecific cells (controls), whereas in silenced cells, negligible amounts of NPD1, 12(S)- and 15(S)-hydroxyeicosatetraenoic acid, and lipoxin A4 were found under these conditions. Neither control nor the deficient cells showed an increase in 15-lipoxygenase-1 protein content after 16 h of oxidative stress, suggesting that the increased activity of 15-lipoxygenase-1 is due to activation of pre-existing proteins. 15-Lipoxygenase-silenced cells also displayed an exacerbated sensitivity to oxidative stress-induced apoptosis when compared with the control cells. NPD1 selectively and potently rescued 15-lipoxygenase-silenced cells from oxidative stress-induced apoptosis. These results demonstrate that 15-lipoxygenase-1 is activated by oxidative stress in ARPE-19 cells and that NPD1 is part of an early survival signaling in RPE cells.  相似文献   

18.
Nerve injury causes degeneration of directly injured neurons and the damage spreads to neighboring neurons. Research on containing the damage has been mainly pharmacological, and has not recruited the immune system. We recently discovered that after traumatic injury to the central nervous system (spinal cord or optic nerve), the immune system apparently recognizes certain injury-associated self-compounds as potentially destructive and comes to the rescue with a protective antiself response mediated by a T-cell subpopulation that can recognize self-antigens. We further showed that individuals differ in their ability to manifest this protective autoimmunity, which is correlated with their ability to resist the development of autoimmune diseases. This finding led us to suggest that the antiself response must be tightly regulated to be expressed in a beneficial rather than a destructive way. In seeking to develop a neuroprotective therapy by boosting the beneficial autoimmune response to injury-associated self-antigens, we looked for an antigen that would not induce an autoimmune disease. Candidate vaccines were the safe synthetic copolymer Cop-1, known to cross-react with self-antigens, or altered myelin-derived peptides. Using these compounds as vaccines, we could safely boost the protective autoimmune response in animal models of acute and chronic insults of mechanical or biochemical origin. Since this vaccination is effective even when given after the insult, and because it protects against the toxicity of glutamate (the most common mediator of secondary degeneration), it can be used to treat chronic neurodegenerative disorders such as glaucoma, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.  相似文献   

19.
The small heat shock proteins (sHSPs) are a highly conserved family of molecular chaperones that are ubiquitously expressed throughout nature. They are transiently upregulated in many tissue types following stressful stimuli. Recently, one member of the sHSP family, HSP20 (HspB6), has been shown to be highly effective as a protective mediator against a number of debilitating pathological conditions, including cardiac hypertrophy and Alzheimer's disease. Hsp20 is also an important modulator of vital physiological processes, such as smooth muscle relaxation and cardiac contractility. This review focuses on the molecular mechanisms employed by HSP20 that allow it to act as an innate protector in the context of cardiovascular and neurological diseases. Emerging evidence for a possible role as an anti-cancer agent is also presented.  相似文献   

20.
Han J  Pan XY  Xu Y  Xiao Y  An Y  Tie L  Pan Y  Li XJ 《Autophagy》2012,8(5):812-825
Our study first proposed that curcumin could protect human endothelial cells from the damage caused by oxidative stress via autophagy. Furthermore, our results revealed that curcumin causes some novel cellular mechanisms that promote autophagy as a protective effect. Pretreatment with curcumin remarkably improves the survival of human umbilical vein endothelial cells (HUVECs) from H 2O 2-induced viability loss, which specifically evokes an autophagic response. Exposed to H 2O 2, curcumin-treated HUVECs upregulate the level of microtubule-associated protein 1 light chain 3-II (LC3-II), the number of autophagosomes, and the degradation of p62. We show that this compound promotes BECN1 expression and inhibits the phosphatidylinositol 3-kinase (PtdIns3K)-AKT-mechanistic target of rapamycin (MTOR) signaling pathway. Curcumin can also reverse FOXO1 (a mediator of autophagy) nuclear localization along with causing an elevated level of cytoplasmic acetylation of FOXO1 and the interaction of acetylated FOXO1 and ATG7, under the circumstance of oxidative stress. Additionally, knockdown of FOXO1 by shRNA inhibits not only the protective effects that curcumin induced, but the autophagic process, from the quantity of LC3-II to the expression of RAB7. These results suggest that curcumin induces autophagy, indicating that curcumin has the potential for use as an autophagic-related antioxidant for prevention and treatment of oxidative stress. These data uncover a brand new protective mechanism involving FOXO1 as having a critical role in regulating autophagy in HUVECs, and suggest a novel role for curcumin in inducing a beneficial form of autophagy in HUVECs, which may be a potential multitargeted therapeutic avenue for the treatment of oxidative stress-related cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号