首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ustilago maydis grows in its host Zea mays eliciting the formation of obvious tumors that are full of black teliospores. Teliospores are thick-walled, dormant, diploid cells that have evolved for dispersal and survival of the pathogen. Their germination leads to new rounds of infection and is temporally linked to meiosis. We are investigating gene expression during teliospore germination to gain insight into the control of this process. Here we identify genes expressed through creation of an expressed sequence tag (EST) library. We generated 2871 ESTs that are assembled into 1293 contiguous sequences. Based upon a blast search similarity cutoff of E < or =10(-5) 38% of all contigs were orphans while 62% showed similarity to sequences in the protein database. Analyses of blast searches were used to functionally classify genes. Northern hybridizations using specific cDNA clones reveal a relative level of expression consistent with the number of sequences per contig. Identified genes and expression information provide a base for genome annotation of U. maydis and further investigation of teliospore germination and pathogenesis.  相似文献   

2.
Ustilago maydis is a model fungal pathogen that induces the formation of tumors in maize. The tumor provides an environment for hyphal differentiation, leading to the formation of thick-walled, diploid teliospores. Such spores serve as a dispersal agent for smut and rust fungi, and their germination leads to new rounds of infection. The morphological changes that occur during teliospore germination in U. maydis have been described in detail. However, the specific molecular events that facilitate this process have not been identified. Through the construction and hybridization of microarrays containing a set of 3918 non-redundant cDNAs, we have identified genes that are differentially regulated during teliospore germination. Teliospores induced to germinate for 4 and 11 h were selected for comparison with dormant teliospores. Genes identified as differentially expressed included many that are presumably involved in as yet undescribed molecular events during teliospore germination, as well as characterized genes previously shown to be required for the process. This study represents the first large-scale investigation of changes in gene expression during teliospore germination.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
The phytopathogenic basidiomycete Ustilago maydis requires its host plant, maize, for completion of its sexual cycle. To investigate the molecular events during infection, we used differential display to identify plant-induced U. maydis genes. We describe the U. maydis gene mig1 (for "maize-induced gene"), which is not expressed during yeast-like growth of the fungus, is weakly expressed during filamentous growth in axenic culture, but is extensively upregulated during plant infection. mig1 encodes a small, highly charged protein of unknown function which contains a functional N-terminal secretion sequence and is not essential for pathogenic development. Adjacent to mig1 is a second gene (mdu1) related to mig1, which appears to result from a gene duplication. mig1 gene expression during the infection cycle was assessed by fusing the promoter to eGFP. Expression of mig1 was absent in hyphae growing on the leaf surface but was detected after penetration and remained high during subsequent proliferation of the fungus until teliospore formation. Successive deletions as well as certain internal deletions in the mig1 promoter conferred elevated levels of reporter gene expression during growth in axenic culture, indicative of negative regulation. During fungal growth in planta, sequence elements between positions -148 and -519 in the mig1 promoter were specifically required for high levels of induction, illustrating additional positive control. We discuss the potential applications of mig1 for the identification of inducing compounds and the respective regulatory genes.  相似文献   

4.
DSS1 encodes a small acidic protein shown in recent structural studies to interact with the DNA binding domain of BRCA2. Here we report that an ortholog of DSS1 is present in Ustilago maydis and associates with Brh2, the BRCA2-related protein, thus recapitulating the protein partnership in this genetically amenable fungus. Mutants of U. maydis deleted of DSS1 are extremely radiation sensitive, deficient in recombination, defective in meiosis, and disturbed in genome stability; these phenotypes mirror previous observations of U. maydis mutants deficient in Brh2 or Rad51. These findings conclusively show that Dss1 constitutes a protein with a significant role in the recombinational repair pathway in U. maydis, and imply that it plays a similar key role in the recombination systems of organisms in which recombinational repair is BRCA2 dependent.  相似文献   

5.
Teliospore germination and nuclear behavior of Narasimhania alismatis   总被引:1,自引:0,他引:1  
Teliospore germination and nuclear behavior were studied in Narasimhania alismatis Pavgi and Thirumalachar, the monotypic aquatic smut in the fam. Tilletiaceae. The diploid fusion nucleus undergoes a meiotic nuclear division within the teliospore and the haploid chromosome complement was determined as n = 4 chromosomes. Several aberrations in the teliospore germination and nuclear behavior were observed and their repercussions discussed.  相似文献   

6.
7.
8.
Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of U. maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins.  相似文献   

9.
In the phytopathogenic fungus Ustilago hordei, one locus with two alternate alleles, MAT-1 and MAT-2, controls mating and the establishment of the infectious dikaryon (bipolar mating). In contrast, for U. maydis, these functions are associated with two different gene complexes, called a and b (tetrapolar mating); the a complex has two alternate specificities, and the b gene complex is multiallelic. We have found homologs for the b gene complex in U. hordei and have cloned one from each mating type using sequences from one bEast allele of U. maydis as a probe. Sequence analysis revealed two divergent open reading frames in each b complex, which we called bW (bWest) and bE (bEast) in analogy with the b gene complex of U. maydis. The predicted bW and bE gene products from the two different mating types showed approximately 75% identity when homologous polypeptides were compared. All of the characterized bW and bE gene products have variable amino-terminal regions, conserved carboxy-terminal regions, and similar homeodomain motifs. Sequence comparisons with the bW1 and bE1 genes of U. maydis showed conservation in organization and structure. Transformation of the U. hordei b gene complex into a U. hordei strain of opposite mating type showed that the b genes from the two mating types are functional alleles. The U. hordei b genes, when introduced into U. maydis, rendered the haploid transformants weakly pathogenic on maize. These results indicate that structurally and functionally conserved b genes are present in U. hordei.  相似文献   

10.
The maize smut fungus Ustilago maydis switches from yeast to hyphal growth to infect maize (Zea mays) plants. This switching is promoted by mating of compatible cells and seems to be required for plant penetration. Although many genes distinctively expressed during this dimorphic switch have been identified and shown to be essential for the infection process, none seems to be explicitly required for polar growth control. Here, we report the characterization of pcl12, encoding a cyclin that interacts specifically with Cdk5, an essential cyclin-dependent kinase with regulatory roles in morphogenesis in U. maydis. Pcl12 fulfills the requirements to be a virulence-specific regulator of polar growth in U. maydis. First, pcl12 expression is induced during the pathogenic development. Secondly, Pcl12 is sufficient to induce hyperpolarized growth in U. maydis cells, as haploid cells overexpressing pcl12 in axenic conditions produce filaments that were morphologically indistinguishable from those produced during the infection process. Finally, cells defective in pcl12 showed impaired polar growth during the formation of the b-dependent filament, the induction of the conjugation tubes, or the formation of a promycelium in spore germination. However, in spite of this pivotal role during morphogenesis, pcl12 mutants were virulent. We discuss the implications of these results for the role of polar growth during the infection process.  相似文献   

11.
A central feature of meiosis is the pairing and recombination of homologous chromosomes. Ustilago maydis, a biotrophic fungus that parasitizes maize, has long been utilized as an experimental system for studying recombination, but it has not been clear when in the life cycle meiotic recombination initiates. U. maydis forms dormant diploid teliospores as the end product of the infection process. Upon germination, teliospores complete meiosis to produce four haploid basidiospores. Here we asked whether the meiotic process begins when teliospores germinate or at an earlier stage in development. When teliospores homozygous for a cdc45 mutation temperature sensitive for DNA synthesis were germinated at the restrictive temperature, four nuclei became visible. This implies that teliospores have already undergone premeiotic DNA synthesis and suggests that meiotic recombination initiates at a stage of infection before teliospores mature. Determination of homologous recombination in plant tissue infected with U. maydis strains heteroallelic for the nar1 gene revealed that Nar+ recombinants were produced at a stage before teliospore maturation. Teliospores obtained from a spo11Δ cross were still able to germinate but the process was highly disturbed and the meiotic products were imbalanced in chromosomal complement. These results show that in U. maydis, homologous recombination initiates during the infection process and that meiosis can proceed even in the absence of Spo11, but with loss of genomic integrity.  相似文献   

12.
玉米黑粉菌(Ustilago maydis)可在其宿主植物玉米(Zea mays L.)地上部的所有器官诱导肿瘤发生。玉米黑粉菌成功定殖宿主并诱导形成肿瘤取决于与宿主植物多方位、多层次的相互作用以及该过程中发生的复杂的细胞和分子事件。本文综述了玉米黑粉菌与玉米互作研究的最新进展,介绍了玉米黑粉菌通过分泌效应子入侵、定殖玉米植株以及植株在分子水平上对入侵的响应;阐述了活体营养建立过程中,玉米黑粉菌与玉米通过效应子、激素、糖代谢酶和转运蛋白的差异调节,协调受感染宿主组织重新编程发育成膨大的植物肿瘤的关键因素,并对今后的研究方向进行了展望。  相似文献   

13.
Flocculosin and ustilagic acid (UA), two highly similar antifungal cellobiose lipids, are respectively produced by Pseudozyma flocculosa, a biocontrol agent, and Ustilago maydis, a plant pathogen. Both glycolipids contain a short-chain fatty acid hydroxylated at the β position but differ in the long fatty acid, which is hydroxylated at the α position in UA and at the β position in flocculosin. In both organisms, the biosynthesis genes are arranged in large clusters. The functions of most genes have already been characterized, but those of the P. flocculosa fhd1 gene and its homolog from U. maydis, uhd1, have remained undefined. The deduced amino acid sequences of these genes show homology to those of short-chain dehydrogenases and reductases (SDR). We disrupted the uhd1 gene in U. maydis and analyzed the secreted UA. uhd1 deletion strains produced UA lacking the β-hydroxyl group of the short-chain fatty acid. To analyze the function of P. flocculosa Fhd1, the corresponding gene was used to complement U. maydis Δuhd1 mutants. Fhd1 was able to restore wild-type UA production, indicating that Fhd1 is responsible for β hydroxylation of the flocculosin short-chain fatty acid. We also investigated a P. flocculosa homolog of the U. maydis long-chain fatty-acid alpha hydroxylase Ahd1. The P. flocculosa ahd1 gene, which does not reside in the flocculosin gene cluster, was introduced into U. maydis Δahd1 mutant strains. P. flocculosa Ahd1 neither complemented the U. maydis Δahd1 phenotype nor resulted in the production of β-hydroxylated UA. This suggests that P. flocculosa Ahd1 is not involved in flocculosin hydroxylation.  相似文献   

14.
Ustilago maydis was specifically detected in infected maize plants by means of the polymerase chain reaction (PCR) using oligonucleotides corresponding to a specific region downstream of the homeodomain of the bE genes of the pathogen. The reaction gave rise to amplification of a ca. 500-bp product when tested with U. maydis DNA, but no amplification was detected with DNA from fungi not related to U. maydis. Using these primers, U. maydis was detected in infected maize plants from differentially susceptible cultivars as early as 4 days after inoculation with strains of variable degrees of virulence. Detection of U. maydis at early stages of infection, or in asymptomatic infected plants should assist in studies on plant-pathogen interactions.  相似文献   

15.
In a screen for DNA repair-defective mutants in the fungus Ustilago maydis, a gene encoding a BRCA2 family member, designated here as Brh2, was identified. A brh2 null allele was found to be defective in allelic recombination, meiosis, and repair of gaps and ionizing radiation damage to the same extent as rad51. Frequent marker loss in meiosis and diploid formation suggested that genomic instability was associated with brh2. This notion was confirmed by molecular karyotype analysis, which revealed gross chromosomal alterations associated with brh2. Yeast two-hybrid analysis indicated interaction between Brh2 and Rad51. Recapitulation in U. maydis of defects in DNA repair and genome stability associated with brh2 means that the BRCA2 gene family is more widespread than previously thought.  相似文献   

16.
The nodal segments of 7-day-old seedlings of maize were inoculated with sporidia of Ustilago maydis. At different times after inoculation (day 0 to day 9), the nodal segments were explanted to tissue culture media containing Benomyl. On one of the media, segments explanted at day 1 or later responded with the formation of galls carrying roots. In such galls Ustilago could complete its life cycle and form teliospores. Explantation at day 0 never led to gall or teliospore formation. Thefindings are discussed with respect to the possible presence of mycoboethins.  相似文献   

17.
18.
Ustilago maydis, a Basidiomycete fungus that infects maize, exhibits two basic morphologies, a yeast-like and a filamentous form. The yeast-like cell is elongated, divides by budding, and the bud grows by tip extension. The filamentous form divides at the apical cell and grows by tip extension. The repertoire of morphologies is increased during interaction with its host, suggesting that plant signals play an important role in generation of additional morphologies. We have used Saccharomyces cerevisiae and Schizosaccharomyces pombe genes known to play a role in cell polarity and morphogenesis, and in the cytoskeleton as probes to survey the U. maydis genome. We have found that most of the yeast machinery is conserved in U. maydis, albeit the degree of similarity varies from strong to weak. The U. maydis genome contains the machinery for recognition and interpretation of the budding yeast axial and bipolar landmarks; however, genes coding for some of the landmark proteins are absent. Genes coding for cell polarity establishment, exocytosis, actin and microtubule organization, microtubule plus-end associated proteins, kinesins, and myosins are also present. Genes not present in S. cerevisiae and S. pombe include a homolog of mammalian Rac, a hybrid myosin-chitin synthase, and several kinesins that exhibit more similarity to their mammalian counterparts. We also used the U. maydis genes identified in this analysis to search other fungal and other eukaryotic genomes to identify the closest homologs. In most cases, not surprisingly, the closest homolog is among filamentous fungi, not the yeasts, and in some cases it is among mammals.  相似文献   

19.
The nonpathogenic (FB-2) and pathogenic (FB-D12) strains of Ustilago maydis were grown in medium supplemented with different carbon sources including monosaccharides, polysaccharides, and plant tissues. Both strains were able to grow on all substrates, with doubling times varying from 2 to 25 h depending on the carbon source. Plant tissues supplied as carbon source induced lytic enzymes differentially; pectate lyase and cellulase activities were induced preferentially by apical stem meristem in strain FB-D12, whereas leaves preferentially induced xylanase and cellulase activities in strain FB2. Stems induced polygalacturonase activity in both strains. All enzyme activities, except cellulase in the FB-D12 strain, were detected at a low level when U. maydis was grown on glucose. In planta, chlorosis and production of teliospores were paralleled by an increase in pectate lyase activity. Anthocyanin production and formation of galls and teliospores correlated with polygalacturonase expression whereas cellulase activity increased only during the stage of anthocyanin production and gall formation. Expression of xylanase activity coincided with the last stage of teliospore formation.  相似文献   

20.
Ustilago hordei is a biotrophic parasite of barley (Hordeum vulgare). After seedling infection, the fungus persists in the plant until head emergence when fungal spores develop and are released from sori formed at kernel positions. The 26.1-Mb U. hordei genome contains 7113 protein encoding genes with high synteny to the smaller genomes of the related, maize-infecting smut fungi Ustilago maydis and Sporisorium reilianum but has a larger repeat content that affected genome evolution at important loci, including mating-type and effector loci. The U. hordei genome encodes components involved in RNA interference and heterochromatin formation, normally involved in genome defense, that are lacking in the U. maydis genome due to clean excision events. These excision events were possibly a result of former presence of repetitive DNA and of an efficient homologous recombination system in U. maydis. We found evidence of repeat-induced point mutations in the genome of U. hordei, indicating that smut fungi use different strategies to counteract the deleterious effects of repetitive DNA. The complement of U. hordei effector genes is comparable to the other two smuts but reveals differences in family expansion and clustering. The availability of the genome sequence will facilitate the identification of genes responsible for virulence and evolution of smut fungi on their respective hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号