首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用红边面积形状参数估测水稻叶层氮浓度   总被引:2,自引:0,他引:2       下载免费PDF全文
研究红边面积参数与叶层氮素状况的定量关系, 有助于水稻(Oryza sativa)生长信息的实时无损获取及精确追氮管理。该研究基于多年不同施氮水平和不同水稻品种的冠层高光谱数据, 系统分析了水稻的红边区域光谱、面积形状特征及其与叶层氮浓度的定量关系。结果表明, 水稻冠层红边区域微分光谱随不同氮素水平变化出现“三峰”现象, 峰值分别出现在700、720和730 nm附近, 且3个波段的峰值高低发生交替变化; 同时, 以3个峰值波段为中心与x坐标轴组成的微分光谱面积和形状相应发生变化。发现基于两两峰值波段划分所得红边子面积所构成的比值(双峰对称度)、归一化差值(归一化对称度)参数与叶层氮浓度具有密切的定量关系, 可作为估测水稻叶层氮浓度的红边面积形状参数。经曲线拟合和模型检验的结果显示, 双峰对称度DPS (A675-700, A675-755), 即由675~700 nm区域面积与675~755 nm区域面积的比值, 和DPS (A730-755,A675-700) (由730~755 nm区域面积和675~700 nm区域面积的比值)对水稻叶层氮浓度的估测效果最好, 可用于不同水稻品种和生长条件下的叶层氮浓度估测。  相似文献   

2.
为了探讨小麦叶片不同功能期光谱变化特征与叶绿素含量之间的关系,以4个小麦杂交组合基因型为试验材料,对不同生长发育期的旗叶进行光谱和叶绿素测量,并采用线性外推法计算其红边位置.结果表明:在近红外区(750 nm~850 nm)和可见光区(500 nm~600 nm)处,从抽穗期到扬花期小麦旗叶光谱反射率呈现上升趋势,到灌浆期开始下降.其叶绿素含量也是先上升,进入灌浆期后开始下降.建立旗叶4个不同功能期4月25日、5月1日、5月6日和5月11日叶绿素含量与其红边位置线性回归模型,其R2分别为0.5893、0.8842、0.9379和0.7258,均达极显著水平,表明此模型可用于叶片叶绿素含量无损监测.  相似文献   

3.
不同灌溉量夏玉米叶绿素含量的高光谱特征及其反演   总被引:2,自引:0,他引:2  
植物叶绿素含量直接影响其光合作用,并与植物的光谱特征密切相关。以夏玉米为研究对象,采用人工控水方法研究了夏玉米七叶期不同灌溉量下冠层叶绿素含量特征及其与光谱特征之间的关系。结果表明:灌溉量越少,夏玉米叶片叶绿素含量越低,冠层光谱反射率越高,绿峰位置"红移",而红边位置"蓝移"。叶绿素含量与光谱特征参数、植被光谱指数之间存在极显著相关关系,据此建立了冠层叶绿素含量高光谱估算模型,且基于植被指数模型较基于单一光谱特征参数模型模拟效果更好。研究结果可为夏玉米叶绿素含量的快速无损测定以及夏玉米干旱监测提供依据。  相似文献   

4.
基于高光谱遥感的小麦冠层叶片色素密度监测   总被引:3,自引:0,他引:3  
冯伟  朱艳  田永超  马吉锋  庄森  曹卫星 《生态学报》2008,28(10):4902-4911
作物叶片色素状况是评价植株光合效率和营养胁迫的重要指标,冠层叶片色素密度(单位土地面积叶片色素总量)的实时无损监测对作物生长诊断、产量估算及氮素管理具有重要意义。以包括不同品质类型(高蛋白、中蛋白和低蛋白)的多个小麦品种在不同施氮水平下的连续2a大田试验为基础,研究了小麦叶片色素密度与冠层高光谱参数的定量关系。结果表明,叶片色素(叶绿素a、叶绿素b、叶绿素a+b和类胡萝卜素)密度随施氮水平增加而提高,不施氮处理的叶片色素密度随生育进程而下降,施氮处理的叶片色素密度呈单峰曲线,品种间存在明显差异。群体叶片色素密度的敏感波段主要分布在可见光区,而红边区域导数光谱表现更显著。光谱参数VOG2、VOG3、RVI(810,560)、SRE/SBE和SDr/SDb等与叶绿素密度关系较为密切,线性方程决定系数R^2均在0.858以上,而与类胡萝卜素密度关系减弱,决定系数R^2低于0.780,且参数间差异较小。经独立试验资料的检验表明,VOG2、VOG3、SRE/SBE和SDr/SDb对不同色素的估测结果较好,预测相对误差RE低于17.6%,虽然对叶绿素b的准确性稍低。总体上,光谱参数VOG2、VOG3、SRE/SBE和SDr/SDb与小麦群体叶片色素密度关系密切,特别是对叶片叶绿素a和叶绿素a+b的密度可以进行准确可靠的实时监测。  相似文献   

5.
We have characterized a new commercial chlorophyll (Chl) and flavonoid (Flav) meter called Dualex 4 Scientific (Dx4). We compared this device to two other Chl meters, the SPAD-502 and the CCM-200. In addition, Dx4 was compared to the leaf-clip Dualex 3 that measures only epidermal Flav. Dx4 is factory-calibrated to provide a linear response to increasing leaf Chl content in units of μg cm(-2) , as opposed to both SPAD-502 and CCM-200 that have a non-linear response to leaf Chl content. Our comparative calibration by Chl extraction confirmed these responses. It seems that the linear response of Dx4 derives from the use of 710 nm as the sampling wavelength for transmittance. The major advantage of Dx4 is its simultaneous assessment of Chl and Flav on the same leaf spot. This allows the generation of the nitrogen balance index (NBI) used for crop surveys and nitrogen nutrition management. The Dx4 leaf clip, that incorporates a GPS receiver, can be useful for non-destructive estimation of leaf Chl and Flav contents for ecophysiological research and ground truthing of remote sensing of vegetation. In this work, we also propose a consensus equation for the transformation of SPAD units into leaf Chl content, for general use.  相似文献   

6.
A flash-lamp chlorophyll (Chl) fluorescence imaging system (FL-FIS) is described that allows to screen and image the photosynthetic activity of several thousand leaf points (pixels) of intact leaves in a non-destructive way within a few seconds. This includes also the registration of several thousand leaf point images of the four natural fluorescence bands of plants in the blue (440 nm) and green (520 nm) regions as well as the red (near 690 nm) and far-red (near 740 nm) Chl fluorescence. The latest components of this Karlsruhe FL-FIS are presented as well as its advantage as compared to the classical single leaf point measurements where only the fluorescence information of one leaf point is sensed per each measurement. Moreover, using the conventional He-Ne-laser induced two-wavelengths Chl fluorometer LITWaF, we demonstrated that the photosynthetic activity of leaves can be determined measuring the Chl fluorescence decrease ratio, RFd (defined as Chl fluorescence decrease Fd from maximum to steady state fluorescence Fs:Fd/Fs), that is determined by the Chl fluorescence induction kinetics (Kautsky effect). The height of the values of the Chl fluorescence decrease ratio RFd is linearly correlated to the net photosynthetic CO2 fixation rate P N as is indicated here for sun and shade leaves of various trees that considerably differ in their P N. Imaging the RFd-ratio of intact leaves permitted the detection of considerable gradients in photosynthetic capacity across the leaf area as well as the spatial heterogeneity and patchiness of photosynthetic quantum conversion within the control leaf and the stressed plants. The higher photosynthetic capacity of sun versus shade leaves was screened by Chl fluorescence imaging. Profile analysis of fluoresence signals (along a line across the leaf area) and histograms (the signal frequency distribution of the fluorescence information of all measured leaf pixels) of Chl fluorescence yield and Chl fluorescence ratios allow, with a high statistical significance, the quantification of the differences in photosynthetic activity between various areas of the leaf as well as between control leaves and water stressed leaves. The progressive uptake and transfer of the herbicide diuron via the petiole into the leaf of an intact plant and the concomitant loss of photosynthetic quantum conversion was followed with high precision by imaging the increase of the red Chl fluorescence F690. Differences in the availability and absorption of soil nitrogen of crop plants can be documented via this flash-lamp fluorescence imaging technique by imaging the blue/red ratio image F440/F690, whereas differences in Chl content are detected by collecting images of the fluorescence ratio red/far-red, F690/F740.  相似文献   

7.
Monitoring leaf photosynthesis with canopy spectral reflectance in rice   总被引:3,自引:0,他引:3  
Non-destructive and rapid method for assessment of leaf photosynthetic characteristics is needed to support photosynthesis modelling and growth monitoring in crop plants. We determined the quantitative relationships between leaf photosynthetic characteristics and canopy spectral reflectance under different water supply and nitrogen application rates. The responses of reflectance at red radiation (wavelength 680 nm) to different water contents and nitrogen rates were parallel to those of leaf net photosynthetic rate (P N). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red, NIR/R) to P N of different leaf positions and leaf layers in rice indicated that the top two full leaves were the best leaf positions for quantitative monitoring of leaf P N with remote sensing technique, and the ratio index R(810,680) was the best ratio index for evaluating leaf photosynthetic characteristics in rice. Testing of the models with independent data sets indicated that R(810,680) could well estimate P N of top two leaves and canopy leaf photosynthetic potential in rice, with the root mean square error of 0.25, 0.16, and 4.38, respectively. Hence R(810,680) can be used to monitor leaf photosynthetic characteristics at different growth stages of rice under diverse growing conditions.  相似文献   

8.
The photosynthetic, optical, and morphological characteristics of a chlorophyll‐deficient (Chl‐deficient) “yellow” soybean mutant (MinnGold) were examined in comparison with 2 green varieties (MN0095 and Eiko). Despite the large difference in Chl content, similar leaf photosynthesis rates were maintained in the Chl‐deficient mutant by offsetting the reduced absorption of red photons by a small increase in photochemical efficiency and lower non‐photochemical quenching. When grown in the field, at full canopy cover, the mutants reflected a significantly larger proportion of incoming shortwave radiation, but the total canopy light absorption was only slightly reduced, most likely due to a deeper penetration of light into the canopy space. As a consequence, canopy‐scale gross primary production and ecosystem respiration were comparable between the Chl‐deficient mutant and the green variety. However, total biomass production was lower in the mutant, which indicates that processes other than steady state photosynthesis caused a reduction in biomass accumulation over time. Analysis of non‐photochemical quenching relaxation and gas exchange in Chl‐deficient and green leaves after transitions from high to low light conditions suggested that dynamic photosynthesis might be responsible for the reduced biomass production in the Chl‐deficient mutant under field conditions.  相似文献   

9.
水稻高光谱变化特征与叶绿素含量监测研究   总被引:2,自引:0,他引:2  
叶绿素含量是评价水稻光合效率的重要指标,实时无损监测叶绿素含量对水稻生长诊断具有重要意义。以水稻P88S(绿叶)和黄1S(黄叶)为试验材料,分析高光谱指数与水稻叶绿素含量的关系,并构建冠层反射光谱与水稻叶绿素含量监测模型。研究结果表明:水稻不同叶色的冠层光谱反射率随着植株生长而不断变化,在绿叶材料P88S的502-711 nm和黄叶材料黄1S的487-716 nm可见光波长范围内,叶绿素含量与一阶微分光谱的相关系数呈极显著正相关。以P88S RVI(363,675)和黄1S DVI'(639,680)作为光谱参数,与叶绿素含量建立估算模型拟合效果最佳,说明利用高光谱技术结合一阶微分光谱的方法可以监测水稻叶绿素含量。  相似文献   

10.
小麦叶片氮素状况与光谱特性的相关性研究   总被引:45,自引:3,他引:45       下载免费PDF全文
 系统分析了不同时相下两个小麦(Triticum aestivium)品种叶片含氮量及叶片氮积累量与冠层光谱反射特征的关系。结果表明,随施氮水平的增加,小麦冠层在可见光区的反射率逐渐降低,而近红外波段的反射率逐渐升高。小麦叶片氮素状况与比值指数或归一化指数显著相关,两个品种表现极为一致,可以用一个指数方程来拟合。分阶段建模并没有提高模型的精度,因此可以建立一个适用于整个生育时期的通用氮素诊断方程。叶片含氮量同光谱指数在整个生育期内的关系要优于叶片氮积累量的,其中,与叶片含氮量关系最佳的指数为红波段(660 nm)和蓝波段(460 nm)的组合(R2>0.80);与叶片氮积累量关系最佳的光谱指数为中红外波段(1 220 nm)与红波段(660 nm)的组合(R2>0.62)。  相似文献   

11.
Passive optical hyperspectral remote sensing of plant pigments offers potential for understanding plant ecophysiological processes across a range of spatial scales. Following a number of decades of research in this field, this paper undertakes a systematic meta-analysis of 85 articles to determine whether passive optical hyperspectral remote sensing techniques are sufficiently well developed to quantify individual plant pigments, which operational solutions are available for wider plant science and the areas which now require greater focus. The findings indicate that predictive relationships are strong for all pigments at the leaf scale but these decrease and become more variable across pigment types at the canopy and landscape scales. At leaf scale it is clear that specific sets of optimal wavelengths can be recommended for operational methodologies: total chlorophyll and chlorophyll a quantification is based on reflectance in the green (550–560nm) and red edge (680–750nm) regions; chlorophyll b on the red, (630–660nm), red edge (670–710nm) and the near-infrared (800–810nm); carotenoids on the 500–580nm region; and anthocyanins on the green (550–560nm), red edge (700–710nm) and near-infrared (780–790nm). For total chlorophyll the optimal wavelengths are valid across canopy and landscape scales and there is some evidence that the same applies for chlorophyll a.  相似文献   

12.
Effects of canopy shade on the lipid composition of soybean leaves   总被引:1,自引:0,他引:1  
The effect of canopy shade on leaf lipid composition was examined in soybeans ( Glycine max cv. Young) grown under field conditions. Expanding leaves were tagged at 50, 58 and 65 days after planting (DAP) in plots with either a high (10 plants m−1 row) or low (1 plant m−1 row) plant density. At 92 DAP, light conditions ranged from a pho-tosynthetic photon flux density (PPFD) of 87% of full sun with a far-red/red (735 nm/645 nm) ratio of 0.9 at upper canopy leaves to extreme shade where the PPFD was 10% of full sun with a far-red/red ratio greater than 6. Highly shaded leaves in the high plant density treatment accumulated triacylglycerol (TG) up to 25% of total leaf lipid, a 2.4-fold increase in TG on a chlorophyll basis compared to leaves in the upper canopy. Although total polar lipid content was reduced up to 50% in shaded leaves, shade had little affect on the lipid content or composition of thylakoid membranes. Shade did not affect leaf chlorophyll content. Therefore, the changes in leaf lipid composition were not related to senescence. These findings suggest that conditions of low irradiance and/or a high FR/R ratio cause a shift in carbon metabolism toward the accumulation of TG, a storage lipid. Eighteen-carbon fatty acid desaturation was also affected in highly shaded leaves where a reduction in linolenic acid (18:3) content was accompanied by a proportional increase in oleic (18:1) and linoleic (18:2) acids.  相似文献   

13.
Leaf chlorophyll content provides valuable information about physiological status of plants. Reflectance measurement makes it possible to quickly and non-destructively assess, in situ, the chlorophyll content in leaves. Our objective was to investigate the spectral behavior of the relationship between reflectance and chlorophyll content and to develop a technique for non-destructive chlorophyll estimation in leaves with a wide range of pigment content and composition using reflectance in a few broad spectral bands. Spectral reflectance of maple, chestnut, wild vine and beech leaves in a wide range of pigment content and composition was investigated. It was shown that reciprocal reflectance (R lambda)-1 in the spectral range lambda from 520 to 550 nm and 695 to 705 nm related closely to the total chlorophyll content in leaves of all species. Subtraction of near infra-red reciprocal reflectance, (RNIR)-1, from (R lambda)-1 made index [(R lambda)(-1)-(RNIR)-1] linearly proportional to the total chlorophyll content in spectral ranges lambda from 525 to 555 nm and from 695 to 725 nm with coefficient of determination r2 > 0.94. To adjust for differences in leaf structure, the product of the latter index and NIR reflectance [(R lambda)(-1)-(RNIR)-1]*(RNIR) was used; this further increased the accuracy of the chlorophyll estimation in the range lambda from 520 to 585 nm and from 695 to 740 nm. Two independent data sets were used to validate the developed algorithms. The root mean square error of the chlorophyll prediction did not exceed 50 mumol/m2 in leaves with total chlorophyll ranged from 1 to 830 mumol/m2.  相似文献   

14.
小麦冠层反射光谱与植株水分状况的关系   总被引:21,自引:3,他引:21  
研究了不同土壤水、氮条件下小麦冠层光谱反射特征与叶片和植株水分状况的相关性.结果表明,在小麦主要生育期,冠层叶片含水率与460~510、610~680和1480~1500nm波段范围内的光谱反射率有较高的相关性,植株含水率与810~870nm波段范围内的光谱反射率密切相关.在整个生长期内,小麦冠层叶片含水率与460~1500nm波段范围内的光谱反射率均有良好相关性,植株含水率与560~1480nm波段范围内光谱反射率的相关性均达到极显著水平.冠层叶片(CL)、上层叶(UL)和下层叶片(LL)含水率与光谱指数的相关程度为CL>LL>UL.冠层叶片和植株含水率与比值指(R(610,560))和光谱指数(R(610,560)/ND(810,610))呈极显著线性负相关,与归一化指数((R810-R610)/(R810+R610))呈极显著线性正相关.其中,用光谱指数(R(610,560)/ND(810,610))监测不同生育期小麦冠层叶片和植株含水率的效果最好。  相似文献   

15.
Maize is one of the most widespread grain crops in the world; however, more than 70% of corn in China suffers some degree of drought disaster every year. Leaf area index (LAI) is an important biophysical parameter of the vegetation canopy and has important significance for crop yield estimation. Using the data of canopy spectral reflectance and leaf area index (LAI) for maize plants experiencing different levels of soil moisture from 2011 to 2012, the characteristics of the canopy reflective spectrum and its first derivative, and their relationships to leaf area index, were analyzed. Soil moisture of the control group was about 75% while that of the drought stress treatment was about 45%. In addition, LAI retrieval models for maize were established using vegetation indices (VIs) and principal component analysis (PCA) and the models were tested using independent datasets representing different soil water contents and different developmental stages of maize. The results showed that canopy spectral reflectances were in accordance with the characteristics of green plants, under both drought stress and at different developmental stages. In the visible band, canopy reflectance for both healthy and damaged vegetation had a green-wavelength peak and a red-wavelength valley; reflectance under drought stress, especially in the green peak (about 550 nm) and the red valley (about 676 nm) was higher than in the control group. In the near-infrared band, the canopy spectral reflectance decreased substantially between 780 and 1350 nm under drought stress. Moreover, the red edge of the spectrum was shifted toward blue wavelengths. The first derivative spectrum showed a double peak phenomenon at the edge of the red band at different developmental stages: the main peak appeared between 728 and 732 nm and the minor peak at about 718 nm. The double peaks become more obvious through the growth and development of the maize, with the most notable effect during the silking and milk stages, after which it gradually decreased. During maize growth, the LAI of all plants, regardless of soil moisture conditions, increased, and the largest LAI also occurred during the silking and milk stages. During those stages, the LAI of plants under different drought stress levels was significantly lower (by 20% or more) than in normal plants with sufficient water supplies. The LAI was highly significantly correlated with canopy spectral reflectance in the bands from 350 nm to 510 nm, from 571 nm to 716 nm, and from 1450 nm to 1575 nm. Also, the LAI was significantly correlated with red edge parameters and several VIs. The Perpendicular Vegetation Index (PVI) had the best correlation with LAI, with a coefficient of determination (R2) of 0.726 for the exponential correlation. Using dependent data, a LAI monitoring model for the maize canopy was constructed using PCA and VI methods. The test results showed that both the VI and PCA methods of monitoring maize LAI could provide robust estimates, with the predicted values of LAI being significantly correlated with the measured values. The model based on PVI showed higher precision under the drought stresses, with a correlation coefficient of 0.893 (n = 27), while the model based on PCA was more precise under conditions of adequate soil moisture, with a correlation coefficient of 0.877 (n = 32). Therefore, a synthesis of the models based on both VI and PCA could be more reliable for precisely predicting LAI under different levels of drought stresses in maize.  相似文献   

16.
研究了不同土壤水氮条件下水稻 (Oryzasativa) 冠层光谱反射特征和植株水分状况的量化关系。结果表明, 水稻冠层近红外光谱反射率随土壤含水量的降低而降低, 短波红外光谱反射率随土壤含水量的降低而升高。相同土壤水分条件下, 高氮水稻的冠层含水率高于低氮水稻的冠层含水率 ;同一水分条件下, 高氮处理的可见光区和短波红外波段光谱反射率低于低氮处理, 近红外波段光谱反射率高于低氮处理。发现拔节后比值植被指数 (R810 /R460 ) 与水稻叶片含水率和植株含水率呈极显著的线性相关, 模型的检验误差 (RootmeansquareError, RMSE) 分别为 0.93和 1.5 0。表明比值植被指数R810 /R460 可以较好地监测不同生育期水稻叶片和植株含水率。  相似文献   

17.
18.
天然草地植被覆盖度的高光谱遥感估算模型   总被引:8,自引:3,他引:8  
利用ASD FieldSpec Pro FRTM光谱仪,对内蒙古自治区锡林郭勒盟的天然草地进行高光谱遥感地面观测,并计算天然草地植被覆盖度;选择25个高光谱特征变量与天然草地植被覆盖度进行相关性分析.结果表明,共有17个变量通过极显著性检验,尤以红边波长范围内一阶微分波段值总和(SDr)的相关系数0.781为最高在此基础上将观测数据分成两组:一组观测数据作为训练样本(n=49),运用单变量线性、非线性和逐步回归方法,建立植被覆盖度高光谱遥感估算模型;另一组观测数据作为检验样本(n=32),进行精度检验分析结果显示,采用逐步回归分析方法,运用冠层原始反射率数据估算草地植被覆盖度的效果并不理想;而以红边波长范围内一阶微分波段值的总和(SDr)为变量的线性回归方程是最佳估算模型,模型标准差为10.4%,估算精度为83.99%.  相似文献   

19.
估测水稻叶层氮浓度的新型蓝光氮指数   总被引:3,自引:0,他引:3  
基于不同氮素水平与品种类型的多个田间试验,综合分析了水稻冠层高光谱植被指数与叶层氮浓度的定量关系.结果表明:对氮反应最敏感的波段为红光665~675 nm、蓝光490~500 nm和红边区域波段680~760 nm.400~2500 nm波段范围内两波段植被指数与水稻叶层氮浓度相关性最好的是550~600 nm与500~550 nm,属绿光波段组合,决定系数(R2)最高的是比值指数SR(533,565).以3个蓝光波段构建的光谱参数R434/(R496+R401)(蓝光氮指数)与水稻叶层氮浓度呈极显著的直线相关关系,与SR(533,565)相比,该参数显著提高了对叶层氮浓度的预测性.独立资料检验结果显示,R434/(R496+R401)对水稻叶层氮浓度具有较好的预测性,检验根均方差(RMSE)和相对误差(RE)值分别为9.67%和8%,是一种适合于水稻叶层氮浓度估测的良好高光谱植被指数.  相似文献   

20.
水稻上部叶片叶绿素含量的高光谱估算模型   总被引:9,自引:1,他引:9  
杨杰  田永超  姚霞  曹卫星  张玉森  朱艳 《生态学报》2009,29(12):6561-6571
叶片叶绿素 (Chl) 状况是评价植株光合效率和营养胁迫的重要指标,实时无损监测Chl状况对作物生长诊断及氮素管理具有重要意义.以不同生态点、不同年份、不同施氮水平、不同类型水稻品种的4个田间试验为基础,于主要生育期同步测定了水稻主茎顶部4张叶片的高光谱反射率及Chl含量,并计算了350~2500 nm范围内任意两波段组合而成的比值(SR[λ1,λ2])和归一化(ND[λ1,λ2])光谱指数以及已报道的对Chl敏感的光谱指数,进一步系统分析了叶片Chl含量与上述光谱指数之间的定量关系.结果表明,红边波段的比值和归一化光谱指数可以较好地预测水稻上部4叶的Chl含量(R~2>0.9),但对于不同Chl指标其最佳组合波段有所差异.估算叶绿素a (Chla)、叶绿素总量(Chla+b)和叶绿素b (Chlb)的最佳比值光谱指数分别为SR(724,709)、SR(728,709)和SR(749,745),方程拟合决定系数R~2分别是0.947、0.946、0.905;最佳归一化光谱指数分别为ND(780,709)、ND(780,712)和ND(749,745),R~2分别是0.944、0.943、0.905.引入445 nm波段反射率对上述光谱指数进行修正,可以降低叶片表面反射差异的影响,提高模型的应用范围.利用不同年份独立的试验资料对所建模型进行了检验,结果表明,修正型比值光谱指数 mSR(724,709)、mSR(728,709) 和 mSR(749,745),以及修正型归一化光谱指数mND(780,709)、mND(780,712) 和 mND(749,745) 预测 Chla、Chla+b 和 Chlb 的效果更好,其测试的RMSE分别为 0.169、0.192、0.052、0.159、0.176、0.052,RE分别为8.18%、7.74%、13.01%、8.26%、7.59%、12.96%,均较修正前降低,说明修正后的光谱指数普适性更好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号