首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the plasticizer di(2-ethylhexyl)phthalate on the intracellular membranes of hepatocytes was investigated. Supplementation of the diet with 2% plasticizer resulted in the appearance of a large number of peroxisomes, and the number of mitochondria was also greatly increased. No significant change in the amount or appearance of the endoplasmic reticulum was detected. The oxidation of palmitoyl-CoA in peroxisomes and the activities of carnitine-acyltransferases are increased to a great extent in both mitochondria and peroxisomes. Intact respiratory control and oxidative phosphorylation indicated that mitochondrial integrity was maintained during the induction. In microsomes, cytochrome P-450 and NADPH-cytochrome c reductase are elevated. The increased incorporation of glycerol into phospholipids indicated an increased rate of synthesis. The induction of peroxisomal and mitochondrial membranes and enzymes, but not of the membranes of the endoplasmic reticulum, by phthalate esters is an unusual and valuable induction pattern not seen with other inducers.  相似文献   

2.
Rats were treated with inducers of peroxisomes, mitochondria and the endoplasmic reticulum, as well as receiving diets and drug known to influence the mevalonate pathway. Treatment with clofibrate and 2-diethylhexylphthalate (DEHP) increased microsomal and mitochondrial ubiquinone contents, but a decrease was observed in lysosomes. In vivo labeling of this lipid with [3H]mevalonate was also elevated. The amount of cholesterol did not change upon exposure to these inducers of peroxisomes and mitochondria, but its rate of labeling was decreased. The concentration of dolichol increased only after treatment with DEHP and only in lysosomes. The inducers of the endoplasmic reticulum phenobarbital, 3-methylcholanthrene and N-nitrosodiethylamine enhanced the rate of ubiquinone synthesis and exposure to the latter two substances also elevated the amount of this lipid in microsomes. A cholesterol-rich diet increased the labeling of ubiquinone and decreased cholesterol labeling, while cholestyramine treatment had opposite effects on lipid labeling in both microsomes and mitochondria. The results demonstrate that the ubiquinone contents of the various membranes of hepatocytes change in a characteristic manner under the influence of inducers and dietary factors. Clearly, the level of ubiquinone and its biosynthesis are regulated separately from those of the other products of the mevalonate pathway, cholesterol and dolichol.  相似文献   

3.
Membranes were isolated from highly purified peroxisomes, mitochondria, and rough and smooth microsomes of rat liver by the one-step Na2CO3 procedure described in the accompanying paper (1982, J. Cell Biol. 93:97-102). The polypeptide compositions of these membranes were determined by SDS PAGE and found to be greatly dissimilar. The peroxisomal membrane contains 12% of the peroxisomal protein and consists of three major polypeptides (21,700, 67,700 and 69,700 daltons) as well as some minor polypeptides. The major peroxisomal membrane proteins as well as most of the minor ones are absent from the endoplasmic reticulum (ER). Conversely, most ER proteins are absent from peroxisomes. By electron microscopy, purified peroxisomal membranes are approximately 6.8 nm thick and have a typical trilaminar appearance. The phospholipid/protein ratio of peroxisomal membranes is approximately 200 nmol/mg; the principal phospholipids are phosphatidyl choline and phosphatidyl ethanolamine as in ER and mitochondrial membranes. In contrast to the mitochondria, peroxisomal membranes contain no cardiolipin. All the membranes investigated contain a polypeptide band with a molecular mass of approximately 15,000 daltons. Whether this represents an exceptional common membrane protein or a coincidence is unknown. The implications of these results for the biogenesis of peroxisomes are discussed.  相似文献   

4.
The present study demonstrates unequivocally the existence of short-chain trans-2-enoyl coenzyme A (CoA) hydratase and beta-ketoacyl CoA reductase activities in the endoplasmic reticulum of rat liver. Subcellular fractionation indicated that all four fractions, namely, mitochondrial, peroxisomal, microsomal, and cytosolic contained significant hydratase activity when crotonyl CoA was employed as the substrate. In the untreated rat, based on marker enzymes and heat treatment, the hydratase activity, expressed as mumol/min/g liver, wet weight, in each fraction was: mitochondria, 684; peroxisomes, 108; microsomes, 36; and cytosol, 60. Following di-(2-ethylhexyl)phthalate (DEHP) treatment (2% (v/w) for 8 days), there was only a 20% increase in mitochondrial activity; in contrast, peroxisomal hydratase activity was stimulated 33-fold, while microsomal and cytosolic activities were enhanced 58- and 14-fold respectively. A portion of the cytosolic hydratase activity can be attributed to the component of the fatty acid synthase complex. Although more than 70% of the total hydratase activity was associated with the mitochondrial fraction in the untreated rat, DEHP treatment markedly altered this pattern; only 11% of the total hydratase activity was present in the mitochondrial fraction, while 49 and 29% resided in the peroxisomal and microsomal fractions, respectively. In addition, all four subcellular fractions contained the short-chain NADH-specific beta-ketoacyl CoA (acetoacetyl CoA) reductase activity. Again, in the untreated animal, reductase activity was predominant in the mitochondrial fraction; following DEHP treatment, there was marked stimulation in the peroxisomal, microsomal, and cytosolic fractions, while the activity in the mitochondrial fraction increased by only 39%. Hence, it can be concluded that both reductase and hydratase activities exist in the endoplasmic reticulum in addition to mitochondria, peroxisomes, and soluble cytoplasm.  相似文献   

5.
Early stages of rat thymocyte apoptosis measured as annexin-V positive events and induced by methylprednisolone (MPS), etoposide, and thapsigargin, showed a sequential increase in nitric oxide (NO) production by mitochondrial and endoplasmic reticulum membranes. Thapsigargin induced the highest NO production, a sevenfold increase as compared with untreated thymocytes, in mitochondrial and microsomal membranes. MPS and etoposide were equally effective in increasing NO production by mitochondrial membranes by a factor of 4-5, with only a slight increase in NO production by endoplasmic reticulum membranes. Western blot analysis of both types of membrane indicated that a nitric oxide synthase (NOS) isoenzyme is present in mitochondrial membranes and reacts with antibodies to i-NOS (type II), while reactivity to antibodies to e-NOS (type III) was restricted to endoplasmic reticulum. The participation of endoplasmic reticulum during apoptosis was further determined by alterations in UDP-Glucosyltransferase (UDP-GT) and NADPH cytochrome P450 reductase. Increased UDP-GT activity was observed after thapsigargin treatment, and no changes were found after treatment with etoposide or MPS. NADPH cytochrome P450 reductase activity markedly decreased during apoptosis, being stronger after thapsigargin treatment. The latest stage of the apoptotic process was measured by caspase activities. Caspase 3 activity was markedly increased by the three apoptosis inducers; caspase 6 was only activated by MPS and etoposide, while caspase 8 was not activated by any of these inducers. It is clear that mitochondria and endoplasmic reticulum are involved in thapsigargin induced thymocyte apoptosis. Meanwhile, other thymocyte apoptotic pathways, such as those induced by MPS or etoposide, seem to centrally involve mitochondria but not endoplasmic reticulum.  相似文献   

6.
Summary An electron microscope study of developing mouse oocytes has revealed a close morphological relationship between mitochondria and endoplasmic reticulum. In many instances, it was noted that the outer mitochondrial membrane was continuous with the reticular membranes. These cytoplasmic membranes are smooth or studded with ribosomes. These continuities establish an open channel between the endoplasmic reticulum and mitochondria. Similar connections are also found in isolated preparations of mitochondria from the adult guinea pig ovary. The functional significance of these observations are discussed in relation to biochemical studies which demonstrate a transfer of protein from endoplasmic reticulum to mitochondria.  相似文献   

7.
A method for the isolation and purification of plasma membranes of Dictyostelium discoideum by equilibrium centrifugation on sucrose followed by Renografin continuous density gradients has been developed and monitored both with electron microscopy and a number of enzyme assays. On electron microscopy, the final plasma membrane fractions are judged to be freethe basis of of nuclei, rough endoplasmic reticulum, lysosomes and peroxisomes. Some profiles of the mitochondrial inner membranes are found within the plasma membrane fractions, but this contamination has been estimated to be only 5%. On the basis on enzyme assays, the plasma membrane fractions contain all the 5'-nucleotidase activity in the final gradients and are free of catalase, acid phosphatase and malate dehydrogenase activity (markers for peroxisomes, lysosomes, soluble enzymes and the matrix of mitochondria). Their content of glucose-6-phosphatase is reduced by more than 70%. The large majority of RNA and DNA have been removed from the preparation.  相似文献   

8.
We have assayed absorbance changes generated by blue light in plasma membranes, endoplasmic reticulum, and mitochondrial membranes from Neurospora crassa. Light minus dark difference spectra, obtained anaerobically in the presence of ethylenediaminetetraacetate, indicated that b-type cytochromes could be photoreduced in all three membranes. In plasma membranes, a b-type cytochrome with a distinct difference spectrum was photoreducible without addition of exogenous flavin. Addition of riboflavin greatly stimulated the photoreduction of cytochromes in endoplasmic reticulum and mitochondrial membranes. In its spectral characteristics the cytochrome on the endoplasmic reticulum resembled cytochrome b5 or nitrate reductase, while the cytochrome in mitochondrial membranes had the same spectrum as cytochrome b of the mitochondrial respiratory chain.

Cytochromes in the three membrane fractions reacted differently to blue light in the presence of various inhibitors. Potassium azide inhibited reduction of plasma membrane cytochrome b, with 50% inhibition at 1.0 millimolar. The same concentration of azide stimulated photoreduction of cytochromes in both endoplasmic reticulum and mitochondria. Although photoreduction of cytochromes in all three membranes was inhibited by salicylhydroxamic acid, cytochromes in plasma membranes were more sensitive to this inhibitor than those in endoplasmic reticulum and mitochondria. Cells grown to induce nitrate reductase activity showed an elevated amount of blue light-reducible cytochrome b in the endoplasmic reticulum.

  相似文献   

9.
A method for the isolation and purification of plasma membranes of Dictyostelium discoideum by equilibrium centrifugation on sucrose followed by Renografin continuous density gradients has been developed and monitored both with electron microscopy and a number of enzyme assays. On the basis of electron microscopy, the final plasma membrane fractions are judged to be free of nuclei, rough endoplasmic reticulum, lysosomes and peroxisomes. Some profiles of the mitochondrial inner membranes are found within the plasma membrane fractions, but this contamination has been estimated to be only 5%. On the basis on enzyme assays, the plasma membrane fractions contain all the 5′-nucleotidase activity in the final gradients and are free of catalase, acid phosphatase and malate dehydrogenase activity (markers for peroxisomes, lysosomes, soluble enzymes and the matrix of mitochondria). Their content of glucose-6-phosphatase is reduced by more than 70%. The large majority of RNA and DNA have been removed from the preparation.  相似文献   

10.
Twenty minutes after i.v. injection of 1.5 micrograms/100 g epinephrine, the phosphorylation rates of rat liver mitochondria were increased by 30-40%. Treatment with cycloheximide or actinomycin D 20 min before epinephrine or glucagon (10 micrograms/100 g, i.v.) injection blocked much of the respiratory activation by these hormones. The treatment with glucagon or epinephrine (20 min) provoked an important development of rough endoplasmic reticulum of which cisternae were closely associated with the mitochondria, and an appearance of abundant ribosomes. We observed close structural contact between mitochondria, and also between smooth endoplasmic reticulum membranes and mitochondria. Thus, glucagon and epinephrine provoked an early stimulation of mRNA and protein synthesis which could be involved in the activation of mitochondrial energy metabolism.  相似文献   

11.
A number of isoprenoids (e.g. pristanic acid and the side chains of fat soluble-vitamins) is degraded or shortened via beta oxidation. We synthesized 2-methyl-palmitate and 2-methyl[1-14C] palmitate as a model substrate for the study of the beta oxidation of branched (isoprenoid) fatty acids in rat liver. 2-Methylpalmitate was well oxidized by isolated hepatocytes and its oxidation was stimulated after treatment of the animals with a peroxisome proliferator. Subcellular fractionation of rat liver demonstrated that 2-methylpalmitate is activated to its CoA ester in endoplasmic reticulum, mitochondria, and peroxisomes and that mitochondria and peroxisomes are capable of beta-oxidizing 2-methylpalmitate. At low unbound 2-methylpalmitate concentrations and in the presence of competing straight chain fatty acids, a condition encountered in vivo, peroxisomal 2-methyl-palmitate oxidation was 2- to 4-fold more active than mitochondrial oxidation. Treatment of rats with a peroxisome proliferator markedly stimulated mitochondrial but only slightly peroxisomal 2-methylpalmitate oxidation. The same treatment dramatically induced palmitoyl-CoA oxidase but did not change 2-methyl-palmitoyl-CoA oxidase activity. Our results indicate 1) that in untreated rats peroxisomes contribute for an important part to the oxidation of 2-methylpalmitate; 2) that treatment with a peroxisome proliferator stimulates mainly the mitochondrial component of 2-methylpalmitate oxidation; and 3) that palmitoyl-CoA and 2-methylpalmitoyl-CoA are oxidized by different peroxisomal oxidases.  相似文献   

12.
The present study was designed to explore the intracellular cholesterol trafficking in Leydig cells of adult rats following Luteinizing hormone (LH) injection. Histochemical techniques were used to demonstrate distribution of free cholesterol in Leydig cells of control and LH-injected rats. Two groups of sexually mature male Sprague Dawley rats (n=4/group) were used. Fifteen min following an injection of 200 microl of either saline (control) or luteinizing hormone (LH, 500 microg in saline) testes of rats were fixed by whole body perfusion using 0.5% glutaraldehyde and 4% paraformaldehyde in 0.1 M cacodylate buffer for 20 min. Fixed testes were cut into 3 mm3 and kept immersed in the fixative for further 15 min. Tissue cubes were then incubated at 37 degrees C in a medium containing cholesterol oxidase, 3,3'-diaminobenzidine tetrahydrochloride, horseradish peroxidase and dimethyl sulfoxide to histochemically localize free cholesterol in Leydig cells and processed for electron microscopy. Thin sections of these tissues were stained with aqueous uranyl acetate and lead citrate and examined with a Philips 201C electron microscope. In Leydig cells of control rats, free cholesterol was detected primarily in lipid droplets and plasma membrane. In the majority of Leydig cells, peroxisomes were unstained for free cholesterol, but occasionally few stained ones were present. Staining was not detected in mitochondria and smooth endoplasmic reticulum (SER) in Leydig cells of control rats. In LH-injected rats, lipid droplets, many peroxisomes, inner and outer mitochondrial membranes and some cisternae of SER in Leydig cells showed staining for free cholesterol. Fusion of Leydig cell peroxisomes with lipid droplets and mitochondria was also observed in the LH treated rats. These findings suggested that peroxisomes in adult rat Leydig cells participate in the intracellular cholesterol trafficking and delivery into mitochondria during LH stimulated steroidogenesis. Lipid droplets are used as one source for cholesterol for this process.  相似文献   

13.
Dolichols and glycosyl transferase activities were studied in rat liver fractions after treatment with the plasticizer di(2-ethylhexyl)phthalate, an inducer of peroxisomes and mitochondria. After a few weeks of treatment with 2% plasticizer in the diet, the amount of dolichol is more than doubled in the lysosomes but not in the microsomes while dolichyl-P decreased by 50% in the microsomes but not in the lysosomes. The isoprenoid pattern for dolichol and dolichyl-P, respectively, is modified to longer polyprenols in the two fractions as seen in the percent distribution of the individual isoprenes. Dolichyl-P and protein glycosylation by N-acetylglucosamine and mannose decreased considerably. Incubation with mixtures containing exogenous dolichyl-P did not increase protein glycosylation. Phthalate ester treatment for 2 years increased dolichol content above the control values even when the dose was decreased a hundred times, to 0.02%. The results demonstrate a compartmentalization of dolichol and dolichyl-P distribution, and the induction studies suggest that hepatocytes possess separate regulating mechanisms for these two compounds.  相似文献   

14.
Administration of the widely used plasticizer di(2-ethylhexyl)phthalate (2% w/w) in the diet to the rat caused proliferation of mitochondria in the liver. The number of mitochondria as well as the amount of protein recovered in the organellar fraction was doubled. Mitochondria isolated from the livers of treated animals showed decreased (50%) respiratory activity. The content and activity of cytochrome oxidase were also decreased. The specific incorporation of amino acids into the proteins of whole liver and of mitochondria was not increased in plasticizer-treated animals. Isolated mitochondria also did not show any difference in the rate of incorporation of amino acids into proteins. The half-lives of whole liver proteins and of mitochondria were increased in plasticizer-fed animals. The half-life of cytochrome oxidase, however, was unaffected by the treatment. The pattern of double labeling of mitochondrial proteins confirmed decreased turnover in plasticizer-treated animals.  相似文献   

15.
The ultrastructure of rat liver cells after running exercise was investigated. When rats were trained for a month and sacrificed immediately after the last exercise it was revealed that the number of liver cells mitochondria increased, but many of them had alterations: mitochondria became swollen, had lucid matrix. There were some variations in degree of alterations between different mitochondria: a) in the same hepatocyte, b) in different hepatocytes of the same animal, that was connected with individual sensitivity of organelles on the levels of the cell and of the organ. Rough endoplasmic reticulum bore few ribosomes. Glycogen was absent. There were abundant vesicles of smooth endoplasmic reticulum, autophagic vacuoles and peroxisomes in the liver cell cytoplasm. Adaptation of rat liver to the exercise programme becomes evident by 1.5 month of exercise. Mitochondria and rough endoplasmic reticulum were numerous and of normal structure. There were many peroxisomes and glycogen granules in the cytoplasm of hepatocyte. The presence of large autophagic vacuoles in the cytoplasm of some hepatocytes were obviously connected with more rapid destruction of some organelles, than in control.  相似文献   

16.
It is well known that phenobarbital (PB) treatment produces an increase in the amount of cytoplasmic membranes of hepatocytes, with a parallel enhancement in the activity of drug-metabolizing enzymes. However, little is known about how the induced membranes are removed after the drug treatment is stopped. To consider this problem, the recovery of rat hepatocytes from PB induction (five daily injections, 100 mg/kg) was followed morphometrically. Treatment with PB produced a cellular enlargement (26%) due to increases in the volume of the cytoplasmic matrix (20%) and the volume (100%) and surface area (90%) of the smooth-surfaced endoplasmic reticulum (SER). The volume of the nuclei and the surface area of the Golgi apparatus were also increased, but no changes were detected in the volumes of the mitochondria or peroxisomes. The SER membranes induced by the PB were removed within 5 days after the end of the treatment period. During this period of membrane removal, we observed an increase in the volume (800%) and number (96%) of autophagic vacuoles without a change in dense bodies. A morphometric analysis of the content of the autophagic vacuoles showed that the endoplasmic reticulum membranes were preferentially removed, and from this we conclude that the formation of autophagic vacuoles was not a random process. Our findings show that the removal of excess cytoplasmic membranes is associated with an increase in autophagic activity and thus demonstrates the presence of a specific cellular mechanism which may be responsible for the bulk removal of PB-induced membranes.  相似文献   

17.
In this study, we determined functional integrity and reactive oxygen species generation in mitochondria and endoplasmic reticulum in liver of rats subjected to endotoxic shock to clarify whether intracellular reactive oxygen species (ROS) destabilize cellular integrity causing necrosis in rats challenged with lipopolysaccharide (LPS). LPS caused drastically increased plasma levels of alanine aminotransferase, suggesting damage to plasma membranes of liver cells. Liver necrosis was confirmed by histological examination. LPS induced a significant increase in ROS production in rat liver mitochondria (RLM), but did not impair mitochondrial function. In contrast to mitochondria, enzymatic activity and ROS production of cytochrome P450 were lower in microsomal fraction obtained from LPS-treated animals, suggesting the dysfunction of endoplasmic reticulum. Protein patterns obtained from RLM by two-dimensional electrophoresis showed significant upregulation of mitochondrial superoxide dismutase by LPS. We hypothesize that upregulation of this enzyme protects mitochondria against mitochondrial ROS, but does not protect other cellular compartments such as endoplasmic reticulum and plasma membrane causing necrosis.  相似文献   

18.
The total mitochondrial fraction of bovine corpus luteum specifically bound [3H]prostaglandin (PG) E1, [3H] PGF, and 125I-labeled human lutropin (hLH) despite very little 5′-nucleotidase activity, a marker for plasma membranes. Since the total mitochondrial fraction isolated by conventional centrifugation techniques contains both mitochondria and lysosomes, it was subfractionated into mitochondria and lysosomes to ascertain the relative contribution of these fractions to the binding. Subfractionation resulted in an enrichment of cytochrome c oxidase (a marker for mitochondria) in mitochondria and of acid phosphatase (a marker for lysosomes) in lysosomes. The lysosomes exhibited little or no contamination with Golgi vesicles, rough endoplasmic reticulum, or peroxisomes as assessed by their appropriate marker enzymes. Subfractionation also re ulted in [3H] PGE1, [3H] PGF, and 125I-labeled hLH binding enrichment with respect to homogenate in lysosomes but not in mitochondria. The lysosomal binding enrichment and recovery were, however, lower than in plasma membranes. The ratios of marker enzyme to binding, an index of organelle contamination, revealed that plasma membrane and lysosomal receptors were intrinsic to these organelles. Freezing and thawing had markedly increased lysosomal binding but had no effect on plasma membrane binding. Exposure to 0.05% Triton X-100 resulted in a greater loss of plasma membrane compared to lysosomal binding. In summary, the above results suggest that lysosomes, but not mitochondria, in addition to plasma membranes, intrinsically contain receptors for PGs and gonadotropins. Furthermore, lysosomes overall contain a greater number of PGs and gonadotropin receptors compared to plasma membranes and these receptors are associated with the membrane but not the contents of lysosomes.  相似文献   

19.
Accumulation of calcium in the mitochondria of rat liver parenchymal cells at 16 and 24 hours after poisoning with carbon tetrachloride is associated with an increase in amount of liver inorganic phosphate, the persistence of mitochondrial adenosine triphosphatase activity, and the formation of electron-opaque intramitochondrial masses in cells with increased calcium contents. These masses, which form within the mitochondrial matrix adjacent to internal mitochondrial membranes, resemble those observed in isolated mitochondria which accumulate calcium and inorganic phosphate; are present in a locus similar to that of electron opacities which result from electron-histochemical determination of mitochondrial ATPase activity; and differ in both appearance and position from matrix granules of normal mitochondria. After poisoning, normal matrix granules disappear from mitochondria prior to their accumulation of calcium. As calcium-associated electron-opaque intramitochondrial masses increase in size, mitochondria degenerate in appearance. At the same time, cytoplasmic membrane systems of mid-zonal and centrilobular cells are disrupted by degranulation of the rough endoplasmic reticulum and the formation of labyrinthine tubular aggregates. The increase in amount of inorganic phosphate in rat liver following poisoning is balanced by a decreased amount of phosphoprotein. These chemical events do not appear to be related, however, as the inorganic phosphate accumulated is derived from serum inorganic phosphate.  相似文献   

20.
线粒体在细胞凋亡中的介导作用   总被引:3,自引:0,他引:3  
白世平  罗绪刚  吕林 《生命科学》2006,18(4):368-372
线粒体是细胞内产生能量的重要细胞器,被认为是细胞生存与死亡的调节中心。Bcl-2家族蛋白、内质网和溶酶体能引起线粒体膜通透性的改变,造成线粒体功能损伤,诱导细胞凋亡。本文主要综述线粒体在Bcl-2家族蛋白、内质网和溶酶体诱导细胞凋亡中作用的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号