首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Association of poly(A) polymerase with U1 RNA   总被引:3,自引:0,他引:3  
Previous studies (Stetler, D. A., and Jacob, S. T. (1984) J. Biol. Chem. 259, 7239-7244) have shown that poly(A) polymerase from adult rat liver (liver-type) is structurally and immunologically distinct from the corresponding rat hepatoma (tumor-type) enzyme. When hepatoma 7777 (McA-RH 7777) cells were labeled with [32P]inorganic phosphate, followed by immunoprecipitation with anti-hepatoma poly(A) polymerase antibodies and analysis of the RNAs in the immunoprecipitate, only one labeled small nuclear RNA corresponding to U1 RNA was found. Preimmune sera did not form a complex with U1 RNA. Hepatoma poly(A) polymerase antisera did not immunoprecipitate U1 RNA or any other small nuclear RNA from a cell line (H4-11-EC3) which does not contain the tumor-type poly(A) polymerase. Immunoblot analysis of hepatoma 7777 nuclear extract or purified poly(A) polymerase with anti-ribonucleoprotein antisera did not show any cross-reactivity of the latter sera with poly(A) polymerase. The major RNA immunoprecipitated from the hepatoma nuclear extracts using trimethyl cap (m3G) antisera corresponded to the RNA immunoprecipitated with poly(A) polymerase antisera. These data indicate that U1 RNA is closely associated with poly(A) polymerase and suggest the potential involvement of this RNA in the cleavage/polyadenylation of mRNA precursor.  相似文献   

2.
Poly(A) polymerases purified from rat liver nuclei consisted of two distinct species, a predominant enzyme of Mr = 38,000 and a minor one of Mr = 48,000. Prior to extensive purification, the minor enzyme constituted approximately 1% of the total liver poly(A) polymerase. Poly(A) polymerase purified from a rat tumor, Morris hepatoma 3924A, was comprised of a single species of Mr = 48,000 which was identical to the minor liver enzyme with respect to chromatographic and immunological characteristics. Gel filtration on Sephacryl S-200 using 0.3 M NaCl for elution showed that the major liver poly(A) polymerase had a molecular weight of 156,000, which corresponded to a tetramer of the 38-kDa polypeptide, whereas the hepatoma and minor liver 48-kDa species existed as dimers with a molecular weight of 96,000. Fractionation by Sephacryl S-200 resulted in complete loss of both liver poly(A) polymerase activities which could be restored by exogenous N1-type protein kinase. Following CNBr cleavage, the 48-kDa poly(A) polymerase from liver and hepatoma exhibited nearly identical peptide maps which were distinct from that of the major liver enzyme (38 kDa). Antibodies raised against tumor poly(A) polymerase reacted with the 48-kDa polypeptide but not with the 38-kDa liver enzyme. Immune complex formation was observed between seven of the eight CNBr cleavage products derived from the 48-kDa polypeptide of both liver and hepatoma. It is concluded that distinct genes in rat liver code for two structurally and immunologically unique nuclear poly(A) polymerases, one of which is identical to the enzyme from the hepatoma.  相似文献   

3.
Nuclear poly(A) polymerase was isolated from [35S]methionine-labeled hepatoma McA-RH 7777 cells and subjected to DEAE-Sephadex chromatography. Flow-through and low salt wash fractions containing poly(A) polymerase activity were pooled and subjected to immunoblot analysis using anti-tumor type poly(A) polymerase antibodies and a biotinylated second antibody. The immune complex contained a single 48-kDa polypeptide band corresponding to the tumor-type enzyme. When immunoprecipitations were carried out using the same fraction and antibodies, at least five 35S-methionine-labeled proteins with approximate molecular masses of 74, 48, 35, 30, and 22 kDa were observed. Pulse-chase studies did not indicate a precursor-product relationship between the immunoprecipitated proteins. Preimmune sera did not react with poly(A) polymerase or other components in the protein complex. These data show that poly(A) polymerase exists as part of a complex with at least four other polypeptides and suggest that these polypeptides may be involved in the cleavage and/or polyadenylation reactions.  相似文献   

4.
The biosynthesis of nonspecific lipid transfer protein (nsLTP) was investigated. Total RNA of rat liver was translated in a rabbit reticulocyte lysate cell-free protein-synthesizing system with [35S]methionine as label. The immunoprecipitation of translation products with affinity-purified anti-nsLTP antibody yielded 14.5- and 60-kDa [35S]polypeptides. The molecular mass of the former polypeptide was approximately 1.5 kDa larger than that of the purified mature nsLTP (13 kDa). The site of synthesis of nsLTP was studied by in vitro translation of free and membrane-bound polyribosomal RNAs followed by immunoprecipitation. mRNA for both the 14.5- and 60-kDa polypeptides were found predominantly in the free polyribosomal fraction in both normal and clofibrate-treated rats. Clofibrate, a hypolipidemic drug that proliferates peroxisomes, did not increase the relative amount of nsLTP mRNA in rat liver. Pulse-chase experiments in rat hepatoma H-35 cells suggested that nsLTP was synthesized as a larger precursor of 14.5 kDa and converted to a mature form of 13 kDa. We have recently shown that nsLTP is highly concentrated in peroxisomes in rat hepatocytes [Tsuneoka et al. (1988) J. Biochem. 104, 560-564]. Taken together, these results suggest that nsLTP is synthesized as a larger precursor of 14.5 kDa on cytoplasmic free polyribosomes, then post-translationally transported to peroxisomes, where the precursor is presumably proteolytically processed to its mature form of 13 kDa. The relationship between the 13-kDa nsLTP and the 60-kDa polypeptide is also discussed.  相似文献   

5.
A specific immunoprecipitation method, using rabbit anti-(chick DNA polymerase beta) IgG was applied to detect the polypeptide of DNA polymerase beta among translation products obtained in vitro with mRNA extracted from chick embryos. A polypeptide of Mr = 40 000 was specifically immunoprecipitated from [35S]methionine-labeled translation products and was competitive with the purified DNA polymerase beta for the antibody. Furthermore, the 40 000-Mr translation product obtained in vitro had DNA polymerase activity, which was detected by assay in situ after electrophoresis in a polyacrylamide gel containing DNA. The mRNA for DNA polymerase beta was polyadenylated and its content was estimated as the range of 0.001% of total poly(A)-rich RNA on the basis of [35S]methionine incorporation in the translation in vitro. The size of this mRNA was determined to be about 1800 nucleotides by zone sedimentation and agarose gel electrophoresis under denaturating conditions.  相似文献   

6.
D A Stetler  S T Jacob 《Biochemistry》1985,24(19):5163-5169
Poly(A) polymerases were purified from the cytosol fraction of rat liver and Morris hepatoma 3924A and compared to previously purified nuclear poly(A) polymerases. Chromatographic fractionation of the hepatoma cytosol on a DEAE-Sephadex column yielded approximately 5 times as much poly(A) polymerase as was obtained from fractionation of the liver cytosol. Hepatoma cytosol contained a single poly(A) polymerase species [48 kilodaltons (kDa)] which was indistinguishable from the hepatoma nuclear enzyme (48 kDa) on the basis of CNBr cleavage maps. Liver cytosol contained two poly(A) polymerase species (40 and 48 kDa). The CNBr cleavage patterns of these two enzymes were distinct from each other. However, the cleavage pattern of the 40-kDa enzyme was similar to that of the major liver nuclear poly(A) polymerase (36 kDa), and approximately three-fourths of the peptide fragments derived from the 48-kDa species were identical with those from the hepatoma enzymes (48 kDa). NI-type protein kinases from liver or hepatoma stimulated hepatoma nuclear and cytosolic poly(A) polymerases 4-6-fold. In contrast, the liver cytosolic 40- and 48-kDa poly(A) polymerases were stimulated only slightly or inhibited by similar units of the protein kinases. Antibodies produced in rabbits against purified hepatoma nuclear poly(A) polymerase reacted equally well with hepatoma nuclear and cytosolic enzyme but only 80% as well with the liver cytosolic 48-kDa poly(A) polymerase and not at all with liver cytosolic 40-kDa or nuclear 36-kDa enzymes. Anti-poly(A) polymerase antibodies present in the serum of a hepatoma-bearing rat reacted with hepatoma nuclear and cytosolic poly(A) polymerases to the same extent but only 40% as well with the liver cytosolic 48-kDa enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A retinol-binding protein (RBP) cDNA clone was used to examine the effect of retinol status on the level of RBP mRNA in the liver, and to explore whether extrahepatic tissues contain RBP mRNA. In the first series of experiments, poly(A+) RNA was isolated from the livers of normal, retinol-depleted, and retinol-repleted rats and the levels of RBP mRNA in these samples were determined by both Northern blot and RNA Dot blot analyses. The levels of RBP mRNA in liver were similar in all three groups of rats. These findings confirm and extend previous studies which showed that retinol did not alter the in vivo rate of RBP synthesis or the translatable levels of RBP mRNA. In a second series of experiments, the RBP cDNA clone was used to survey poly (A+) RNA isolated from 12 different rat tissues for RBP mRNA by Northern blot analysis. We found that, along with the liver, many extrahepatic tissues contained RBP mRNA. Kidney contained RBP mRNA at a level of 5-10% of that of the liver, and the lungs, spleen, brain, stomach, heart, and skeletal muscle contained 1-3% of that of the liver. Translation of kidney poly (A+) RNA in rabbit reticulocyte lysates and immunoprecipitation of the translation products with anti-RBP antiserum resulted in a protein band of the same size as liver preRBP. These data suggest that RBP is synthesized in many extrahepatic tissues.It is possible that this extra-hepatically synthesized RBP may function in the recycling of retinol from these tissues back to the liver or to other target organs.  相似文献   

8.
RNA excess hybridization experiments were used to measure the complexity of nuclear RNA, poly(A+) mRNA, poly(A-) mRNA, and EDTA-released polysomal RNA sedimenting at less than 80 S in mouse liver and in cultured mouse cells. With both cell types, poly(A-) RNA was found to contain 30-40% of the sequence diversity of total mRNA. In the case of liver this represents 5,700 poly(A-) molecules and 8,600 poly(A+) molecules for a total of approximately 14,300 different mRNAs. Comparison of the complexity of mRNA with that of nuclear RNA revealed that in liver and in cultured cells, mRNA has only 10-20% of the sequence diversity present in nuclear RNA. This latter observation is consistent with existing data on mammalian cells from this and other laboratories.  相似文献   

9.
Studies were conducted to ascertain if transthyretin mRNA was present in extrahepatic tissues of the rat. A trnasthyretin cDNA clone was isolated from a lambda gt11 human liver cDNA library by antibody screening and its identity was confirmed by nucleotide sequence analysis. This transthyretin cDNA clone was used to survey poly(A+) RNA isolated from 12 different rat tissues for transthyretin mRNA by Northern blot analysis. The liver contained the highest level of transthyretin mRNA and this level was not altered by the vitamin A status of the rat. A significant amount of transthyretin mRNA was found in the brain (30% of the level of the liver) which was localized in specific regions of the brain. In addition, detectable levels of transthyretin mRNA (1% to 2% of that of the liver) were observed in the stomach, heart, skeletal muscle, and spleen. Translation of brain poly(A+) RNA in rabbit reticulocyte lysates and immunoprecipitation of the translation products with anti-transthyretin antiserum resulted in a protein band of the same size as liver pre-transthyretin. Liver pre-transthyretin was processed by the cotranslational addition of dog pancreas microsomal membranes to a protein that migrated coincidentally with monomeric serum transthyretin. These data suggest that transthyretin in the brain and the cerebrospinal fluid results from de novo synthesis and that transthyretin may play a significant physiological function, as yet unknown, within the nervous system.  相似文献   

10.
W M Wood  J C Wallace  M Edmonds 《Biochemistry》1985,24(14):3686-3693
Oligo(uridylic acid)-containing [oligo(U+)] RNA was isolated from poly(adenylic acid)-containing [poly(A+)] mRNA from HeLa cells by using either formaldehyde pretreatment or poly(A) removal, both of which resulted in increased accessibility of oligo(U)-rich sequences to a poly(A)-agarose affinity column. In this report, we compared the sequence content of oligo(U+) RNA with that of molecules lacking oligo(U) [oligo(U-) RNA] by their relative hybridization to cDNA reverse-transcribed from poly(A+) mRNA and by comparison of their in vitro translation products synthesized in a rabbit reticulocyte lysate. Formaldehyde-modified poly(A+) RNA, treated to remove the formol adjuncts, was inactive as a template for in vitro protein synthesis; consequently, only depolyadenylated RNA, which retains its translatability, could be used in the translation studies. The hybridization kinetic experiments revealed that oligo(U+) RNA contained most of the sequence information present in oligo(U-) RNA but at a reduced level (ca. 25%), the majority of the oligo(U+) RNA sequences being poorly represented in the cDNA. This result was supported by one- and two-dimensional gel analysis of their in vitro translation products which showed that oligo(U+) RNA, although less effective as a template for translation than oligo(U-) RNA, coded for proteins, the most abundant of which were encoded by rare messages not highly represented in oligo(U-) RNA or the total poly(A+) RNA. Although some minor products were synthesized by both oligo(U+) and oligo(U-) RNA, at least 33 proteins were unique to or highly enriched in the pattern of products directed by oligo(U+) RNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
13.
14.
15.
16.
We have analyzed mRNA coding for blood-stage antigens of Plasmodium yoelii by using cellfree translation of poly A+ and poly A- RNA in conjunction with immunoprecipitations. Most of the antigens recognized by mouse hyperimmune serum to P. yoelii were coded by poly A+ mRNA ranging in size from 15S to 28S. However, certain P. yoelii antigens, notably those with m.w. greater than 150 kilodaltons (kd), were coded by mRNA that purified as being poly A-. Antigens recognized by a protective monoclonal antibody (McAb) were coded by such operationally poly A- RNA. Three polypeptides apparently coded by different poly A- RNA were immunoprecipitated by this McAb. With the use of another McAb, a poly A+ mRNA of about 19S was identified as coding for a polypeptide of 46 kd synthesized in cellfree translation reactions. The same McAb recognized a 34 kd polypeptide in metabolically labeled polypeptides of P. yoelii. This antigen appeared to be processed in vivo but not in vitro. The observation that some mRNA of P. yoelii purify as being poly A- has significant implications for the construction of cDNA libraries that employ poly A+ mRNA of malarial parasites: if it applies to other species of plasmodia, some potentially important operationally poly A- mRNA may not be represented in such libraries.  相似文献   

17.
Poly(A)-rich RNA has been isolated from calf thymus and translated in vitro in a rabbit reticulocyte translation system. Three peptides with Mr = 58,000, 33,000, and 13,000 were specifically immunoprecipitated from the translation products with calf terminal deoxynucleotidyltransferase antiserum. An oligo(dT)-purified preparation of calf terminal transferase competed with only the Mr = 58,000 peptide in the immunoprecipitation reaction. The anti-terminal transferase serum did not precipitate a Mr = 58,000 peptide from translation products of spleen or liver mRNA, but it did precipitate the Mr = 33,000 and 13,000 peptides from products of spleen mRNA and a Mr = 13,000 peptide from products of liver mRNA. In addition, when an affinity-purified antibody to calf terminal transferase was used, only a Mr = 58,000 peptide was immunoprecipitated from the translation products of calf thymus mRNA, and none was immunoprecipitated from spleen or liver mRNA products. This antibody also precipitated a Mr = 58,000 peptide from the cell lysates of calf thymocytes labeled in vitro with [35S]methionine. These results demonstrate that calf terminal transferase is biosynthesized as a Mr = 58,000 peptide.  相似文献   

18.
The kinetics of accumulation of poly(A+)mRNA in polyribosomes and the ratio: poly(A+)mRNA/(poly A-)mRNA were studied in regenerating mouse liver. It has been found, that the ratio: (poly A+)mRNA/(poly A-)mRNA was associated with the function of the cells: (poly A+)mRNA fraction has been decreased to 7% at 7 hours after partial hepatectomy and then reached the original value (25%) at 30-40 hours. The kinetics of accumulation of (poly A+)mRNA in polyribosomes during the transition from resting to growing state has revealed that both the lifetime and the presumable time of processing of the mRNAs of free and membranebound polyribosomes were decreased as compared to resting liver cells.  相似文献   

19.
Changes in relaxin precursor mRNA levels in the rat ovary during pregnancy   总被引:1,自引:0,他引:1  
Levels of preprorelaxin mRNA in the rat ovary during pregnancy were determined by cell-free translation and by hybridization analyses with cloned preprorelaxin cDNA. Translation of poly(A+) RNA from rat ovaries taken at different stages of pregnancy resulted in the incorporation of [35S]cysteine into two peptides, of Mr 17,500 and 20,500, that were specifically bound by anti-relaxin IgG. Both peptides also were demonstrated by translation of ovarian poly(A+) RNA that was hybrid-selected with cloned preprorelaxin cDNA, the sequence of which corresponds to the Mr 20,500 peptide. The origin of the Mr 17,500 putative precursor is not presently known. Preprorelaxin mRNA translational activities corresponded to previously reported concentrations of relaxin in rat ovaries during pregnancy. The results of hybridization analyses, both by Northern blotting of poly(A+) RNA and dot blotting of unfractionated RNA, agreed with those of translation assays. Preprorelaxin mRNA activity/concentration was low in early pregnancy, rose markedly and reached a plateau on days 15-20 (about 1-2% of total translation activity), and then fell to low levels again by day 23, the time of parturition. These findings indicate that the concentration of relaxin in the rat ovary is directly dependent on preprorelaxin mRNA levels.  相似文献   

20.
The poly(A+)/poly(A-)mRNA ratio and the half-life time of poly(A+)mRNA for mRNA metabolism in the liver and brain of rat in the course of ontogensis, late embryogenesis, postnatal development and upon ageing were determined. It was shown that in the course of ontogenesis both the ratio of poly(A+)/poly(A-)mRNA of free and membrane-bound polyribosomes and the half-life time of poly(A+)mRNA determined from the degradation kinetics in the presence of actinomycin D are changed. A possible role of poly(A) sequences in the regulation of mRNA life-time is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号