首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Regulation of protease production in Clostridium sporogenes.   总被引:3,自引:2,他引:1       下载免费PDF全文
The physiological and nutritional factors that regulate protease synthesis in Clostridium sporogenes C25 were studied in batch and continuous cultures. Formation of extracellular proteases occurred at the end of active growth and during the stationary phase in batch cultures. Protease production was inversely related to growth rate in glucose-excess and glucose-limited chemostats over the range D = 0.05 to 0.70 h-1. In pulse experiments, glucose, ammonia, phosphate, and some amino acids (tryptophan, proline, tyrosine, and isoleucine) strongly repressed protease synthesis. This repression was not relieved by addition of 4 mM cyclic AMP, cyclic GMP, or dibutyryl cyclic AMP. Protease formation was markedly inhibited by 4 mM ATP and ADP, but GTP and GDP had little effect on the process. It is concluded that protease production by C. sporogenes is strongly influenced by the amount of energy available to the cells, with the highest levels of protease synthesis occurring under energy-limiting conditions.  相似文献   

2.
The synthesis of carnosine (beta-Ala-His) by astroglia-rich primary cultures was much higher if the cells were cultivated in Ham's nutrient mixture F-12 than if they were grown in Dulbecco's modified Eagle's medium. Carnosine synthesis was not affected by the presence of insulin, transferrin, phorbol myristate acetate, or dexamethasone. However, dibutyryl cyclic AMP and other agents that can, directly or indirectly, activate cyclic AMP-dependent protein kinases strongly lower the rate of carnosine synthesis. The depression of carnosine synthesis was dependent on the concentration of dibutyryl cyclic AMP. The effect was maximal (approximately 80% inhibition) in cultures preincubated with 1 mM dibutyryl cyclic AMP for 4 days. The adenylate cyclase activator forskolin, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, and 8-bromo-cyclic AMP caused the same depression as dibutyryl cyclic AMP, whereas neither butyrate nor dibutyryl cyclic GMP elicited any effect.  相似文献   

3.
Summary The production of extracellular protease by Streptomyces clavuligerus was strongly influenced by the nature of the nitrogen source. Production took place in batch cultures during growth at low or intermediate growth rates, but was delayed to the post-exponential phase in media supporting high growth rates. Protease formation could be initiated by a nutritional shift-down induced by casamino acids deprivation. Under both types of conditions maximal production was related to the growth rates of the cultures and was stimulated by low concentrations of casamino acids or yeast extract. Some purine compounds also influenced production in shift-down conditions. Ammonium interfered with protease formation whenever it was added to the medium. Some mutants with ltered nitrogen control of primary metabolism were also affected in the production of protease. A partial characterization of the activity indicated that it was due to a single metalloprotease with an apparent molecular mass of 41,700 Da.Offprint requests to: A. F. Braña  相似文献   

4.
The addition of 1 mM cyclic AMP to induced and repressed cultures of Aspergillus nidulans and its mutant strain (CRR 141) resistant to catabolite repression was fully capable of releasing the wild type from catabolite repression while it caused hyperproduction of cellulases in glycerol repressed cultures. The relief of the catabolite repression was also accompanied by a dramatic drop in enhanced protease levels, thereby indicating that the synthesis of proteases (during the catabolite repression) is under the control of cyclic AMP.  相似文献   

5.
The physiology of Clostridium sporogenes was investigated in defined, minimal media. In batch culture, the major end products of glucose dissimilation were acetate, ethanol and formate. When L-proline was present as an electron acceptor, acetate production was strongly enhanced at the expense of ethanol. As judged by assay of the relevant enzymes, glucose was metabolized via the Embden-Meyerhof-Parnas pathway. The growth energetics of Cl. sporogenes were investigated in glucose- or L-valine-limited chemostat cultures. In the former case, the addition of L-proline to the medium caused a significant increase in the molar growth yield (as calculated by extrapolation to infinite dilution rate). This finding adds weight to the view that the reduction of L-proline by Cl. sporogenes is coupled to the conservation of free energy.  相似文献   

6.
The physiology of Clostridium sporogenes NCIB 8053 growing in defined media   总被引:3,自引:3,他引:0  
The physiology of Clostridium sporogenes was investigated in defined, minimal media. In batch culture, the major end products of glucose dissimilation were acetate, ethanol and formate. When L-proline was present as an electron acceptor, acetate production was strongly enhanced at the expense of ethanol. As judged by assay of the relevant enzymes, glucose was metabolized via the Embden-Meyerhof-Parnas pathway. The growth energetics of Cl. sporogenes were investigated in glucose- or L-valine-limited chemostat cultures. In the former case, the addition of L-proline to the medium caused a significant increase in the molar growth yield (as calculated by extrapolation to infinite dilution rate). This finding adds weight to the view that the reduction of L-proline by Cl. sporogenes is coupled to the conservation of free energy.  相似文献   

7.
Vibrio alginolyticus synthesized an inducible extracellular collagenase in a peptone medium during the stationary growth phase. These cultures also possessed extracellular alkaline serine protease activity. The alkaline protease activity did not require a specific inducer and it was produced in tryptone or minimal media. The collagenase was not produced in either the tryptone or minimal media. The alkaline protease activity was sensitive to catabolite repression by a number of carbon sources, including glucose, and by amino acids and ammonium ions. Cyclic AMP, dibutyryl cyclic AMP and cyclic GMP did not relieve catabolite repression. Histidine and urocanic acid stimulated the production of alkaline protease activity in tryptone and minimal media. Other compounds associated with the histidine utilization (hut) pathway did not increase alkaline protease activity. Histidine reversed the repression of alkaline protease activity by glucose of (NH4)2SO4 in minimal medium. Histidine and the compounds associated with the hut pathway inhibited collagenase production.  相似文献   

8.
Production of extracellular amylase and protease in Vibrio parahaemolyticus was repressed by various carbohydrates present in the medium. In addition, the protease production was repressed very strongly by peptones or casamino acids. Cyclic adenosine 3′, 5′-monophosphate (cyclic AMP) added exogenously could reverse the repression of amylase production, but not that of protease production irrespective of the “repressors” used. Mutants of V. parahaemolyticus, which resembled the reported cya (adenylate cyclase) and crp (cyclic AMP receptor protein) mutants of Escherichia coli and related organisms, were examined for the exoenzyme production. Amylase production in the mutants was defective, while their protease production was not defective, but rather accentuated as compared with that in the parental strain. These findings strongly suggest that amylase production is subject to catabolite repression mediated by cyclic AMP, whereas protease production is controlled by a repression mechanism which mimics in part, but may be distinct from catabolite repression.  相似文献   

9.
Glutamine synthetase specific activity increases greater than 100-fold during the insulin-mediated differentiation of confluent 3T3-L1 cells into adipocytes. Incubation of the adipocytes for 22 h with 0.5 mM dibutyryl cyclic AMP plus 0.5 mM theophylline, 0.2 mM 8-bromo-cyclic AMP, 10 micro M epinephrine, or 1 microgram of alpha 1-24 adrenocorticotropic hormone/ml decreased glutamine synthetase by greater than 60%. During the same incubation period, there was no effect of these compounds on protein or on the specific activities of glucose-6-P dehydrogenase or hexokinase. In the presence of 0.5 mM theophylline, the dibutyryl cyclic AMP-mediated decrease in glutamine synthetase activity was half-maximal at 50 micro M dibutyryl cyclic AMP. Furthermore, between 10 micro M and 5 mM dibutyryl cyclic AMP, the dibutyryl cyclic AMP-mediated decrease in glutamine synthetase was similar in the absence or presence of 1 microgram of insulin/ml. Immunotitration of glutamine synthetase activity from 3T3 adipocytes indicates that the dibutyryl cyclic AMP-mediated decrease in the activity is due to a decrease in the cellular content of glutamine synthetase molecules. We studied the effects of dibutyryl cyclic AMP on the synthesis and degradation of glutamine synthetase. Synthesis rate was estimated from the incorporation of L-[35S]methionine into glutamine synthetase during a 60-min incubation period. Degradation rate was estimated from the first order disappearance of radioactivity from glutamine synthetase in 3T3 adipocytes previously incubated with L-[35S]methionine. Glutamine synthetase was isolated by immunoprecipitation followed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Incubation of 3T3 adipocytes with dibutyrl cyclic AMP resulted in a rapid decline in the apparent synthesis rate of glutamine synthetase. In addition, dibutyryl cyclic AMP treatment increased the initial rate of glutamine synthetase degradation. The half-life of glutamine synthetase was 24.5 h in control cultures and 16 h in dibutyryl cyclic AMP-treated cultures. In contrast, dibutyryl cyclic AMP had little effect on the synthesis or degradation of soluble protein. Our data indicate that the dibutyryl cyclic AMP-mediated decrease in 3T3 adipocyte glutamine synthetase activity results from a decrease in the synthesis rate and an increase in the initial degradation rate of the enzyme.  相似文献   

10.
Elevated concentrations of cyclic AMP elicit only minor reductions in growth rate and saturation density in undifferentiated Friend erythroleukemic cells. During the course of dimethylsulfoxide (DMSO)-induced differentiation, Friend cells convert from a cyclic AMP-tolerant state to a phenotype characterized by a high degree of sensitivity to cyclic AMP-mediated growth arrest. Conversion to cyclic AMP sensitivity is detectable after 30 hours growth in medium containing 2% DMSO, and either 0.5 mM 8-Br-cyclic AMP or 5 nM cholera toxin. Cultures of differentiating Friend cells achieved a stationary phase density that was approximately 8-fold higher than the cell density observed in parallel, differentiating cultures treated with 0.5 mM 8-Br-cyclic AMP. Temporally, the appearance of cyclic AMP-sensitivity corresponds to the early expression of in vitro erythroid differentiation (Ross et al., '74), but growth arrest does not alter the subsequent accumulation of hemoglobin in non-dividing DMSO-induced cells. Since growth arrest is preceded by a round of cell division, these observations are consistent with the concept that DMSO must be present during DNA replication for the subsequent expression of hemoglobin synthesis (McClintock and Papaconstantinou, '74; Levy et al., '75; Harrison, '76).  相似文献   

11.
The influence of cyclic AMP analogues and fatty acids on glycerolipid biosynthesis in monolayer cultures of rat hepatocytes was investigated. Chlorophenylthio-cyclic AMP and adenosine 3':5'-cyclic phosphorothioate inhibited the rate of triacylglycerol synthesis from [1(3)-3H]glycerol, and phosphatidylcholine synthesis from [Me-3H]-choline. Supplementation of the hepatocytes with palmitate (1 mM) reversed chlorophenylthio-cyclic AMP inhibition of triacylglycerol synthesis. Similarly, cyclic AMP analogue-inhibition of phosphatidylcholine synthesis was abolished when the cells were simultaneously incubated with oleate (3 mM). Reactivation of phosphatidylcholine synthesis in chlorophenylthio-cyclic AMP-supplemented cells with oleate was accompanied by conversion of CTP: phosphocholine cytidylyltransferase into the membrane-bound form, since these cells released the enzyme more slowly after treatment with digitonin. The opposing actions of cyclic AMP and fatty acids are discussed in relation to the regulation of glycerolipid biosynthesis during starvation, diabetes and stress.  相似文献   

12.
Inorganic phosphate inhibited the biosynthesis of the macrolide antibiotic turimycin in different strains of Streptomyces hygroscopicus. In the wild type strain a depression was observed with increasing phosphate concentrations. A total inhibition was found at 0.1 M phosphate. In a high producing mutant a minimum of turimycin production occured when the phosphate concentration was between 5 mM and 10 mM. Above this concentration the antibiotic synthesis increased again but the production period shifted to a later period of cultivation. Addition of inorganic phosphate resulted in an initial increase of intracellular cyclic AMP content. But a second elevation characterizing the normal level of cyclic AMP throughout the growth phase was prevented by phosphate. Exogenous cyclic AMP as well as positive effectors of the adenylyl cyclase system were able to overcome the phosphate suppression. Cyclic AMP abolished the reduction of protein synthesis following phosphate addition and caused the reappearance of a protein band which may be responsible for the turimycin biosynthesis.  相似文献   

13.
Cyclic AMP levels have been measured in cultures derived from 12-day-old chick embryonic muscle. A rise in concentration was found after the onset of myoblast fusion. Cells cultured at a medium Ca2+ concentration of 0.1 μM did not fuse and exhibited only a small rise in cyclic AMP concentration during culture. Addition of 1.4 mM Ca2+ to these cells after 50 h in culture caused rapid, synchronous fusion with a concomitant rise in cyclic AMP levels. Indomethacin, an inhibitor of prostaglandin synthesis, did not inhibit fusion, but inhibited the rise in cyclic AMP concentration. Indomethacin-treated cultures exhibited lower creatine kinase levels, though no change in the ratio of the three isoenzymes was observed. Addition of prostaglandins E1 and E2 to indomethacin-treated cultures overcame this inhibition. We propose that prostaglandin synthesis is a consequence of the stimulation of myoblast fusion and that via cyclic AMP it stimulates protein synthesis.  相似文献   

14.
The effects of dibutyryl cyclic AMP (DBcAMP) and related compounds on collagen synthesis in a clonal osteoblast-like cell line, MC3T3-E1, were investigated. The addition of DBcAMP to cultures increased the hydroxyproline content of the cells. It also enhanced the incorporation of labeled proline into collagen and elevated the activity of prolyl hydroxylase, an enzyme involved in collagen synthesis. These effects were observed at concentrations of 0.1 to 2 mM DBcAMP. 8-Bromo cyclic AMP also increased the hydroxyproline content of the cells, while sodium butyrate and dibutyryl cyclic GMP had no such effect. These results suggest that the intracellular accumulation of cyclic AMP in osteoblasts leads to their active production of collagen, a major component of the organic matrix of bone.  相似文献   

15.
The role of cyclic AMP in the regulation of cartilage macromolecule synthesis in vitro was studied in pelvic cartilage from 10-12 day chick embryos. Incubation of cartilages in medium containing 0.5 mM cyclic AMP resulted in a 30% inhibition of 35SO4-2, [3H]leucine and [3H]uridine incorporation into proteoglycan, total protein and RNA, respectively. Higher concentrations of cyclic AMP had no greater effects. In contrast, butyrylated cyclic AMP derivatives (0.5-5.0 mM) added to the incubation medium stimulated (50-100%) the incorporation of these radiolabeled precursors into cartilage macromolecules. Theophylline, in concentrations (0.1-0.5 mM) which raise intracellular cyclic AMP, also increases the incorporation of radiolabeled precursors into macromolecules. The data indicate that exogenous cyclic AMP and butyrylated cyclic AMP derivatives have paradoxical effects on cartilage macromolecule synthesis. Butyrylated cyclic AMP derivatives, not exogenous cyclic AMP, mimic the effects of intracellular cyclic AMP. Incubation of embryonic chicken cartilage with exogenous cyclic AMP results in the extracellular degradation of the cyclic AMP to adenosine. Adenosine (0.125 mM) inhibits precursor incorporation into cartilage macromolecules. The metabolism of exogenous cyclic AMP generates sufficient adenosine to account for the observed inhibitory effects of exogenous cyclic AMP on cartilage macromolecule synthesis. Butyrylated cyclic AMP derivatives are not degraded during incubation with cartilage. The data indicate that cartilage is a tissue in which the effect of cyclic AMP is to stimulate anabolic processes.  相似文献   

16.
Extracellular protease production by Clostridium bifermentans NCTC 2914 occurred throughout the growth phase in batch culture. In both glucose-excess and -limited chemostats, protease formation was inversely related to the dilution rate, over the range D = 0.03 to 0.70 h-1. At high dilution rates (D greater than 0.25 h-1), protease activities were greatest under excess glucose conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of chemostat culture effluents showed the presence of up to 18 bands of protease activity at low dilution rates, with apparent molecular masses ranging from about 36 to 125 kDa. High-performance liquid chromatography gel filtration of culture supernatants gave four peaks of activity at 34, 42, 60, and 102 kDa. Glucose, peptone, and phosphate stimulated protease formation, but ammonia concentrations up to 10 g liter-1 had little effect on the process. Culture pH in glucose-excess chemostats strongly influenced protease synthesis, which was maximal during growth at pH 6.4. The optimal pH of protease activity was 7.0. Although a wide variety of proteins were hydrolyzed by C. bifermentans proteases, none of the enzymes were collagenolytic. Of 21 different p-nitroanilide, beta-naphthylamide, and N-carbobenzoyl substrates tested, none were hydrolyzed. With the exception of Ca2+, divalent metal ions inhibited proteolysis. Experiments with protease inhibitors demonstrated that 1 mM EDTA inhibited protease activities in culture supernatants by over 90%, indicating that the enzymes were principally of the metalloprotease type.  相似文献   

17.
Extracellular protease production by Clostridium bifermentans NCTC 2914 occurred throughout the growth phase in batch culture. In both glucose-excess and -limited chemostats, protease formation was inversely related to the dilution rate, over the range D = 0.03 to 0.70 h-1. At high dilution rates (D greater than 0.25 h-1), protease activities were greatest under excess glucose conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of chemostat culture effluents showed the presence of up to 18 bands of protease activity at low dilution rates, with apparent molecular masses ranging from about 36 to 125 kDa. High-performance liquid chromatography gel filtration of culture supernatants gave four peaks of activity at 34, 42, 60, and 102 kDa. Glucose, peptone, and phosphate stimulated protease formation, but ammonia concentrations up to 10 g liter-1 had little effect on the process. Culture pH in glucose-excess chemostats strongly influenced protease synthesis, which was maximal during growth at pH 6.4. The optimal pH of protease activity was 7.0. Although a wide variety of proteins were hydrolyzed by C. bifermentans proteases, none of the enzymes were collagenolytic. Of 21 different p-nitroanilide, beta-naphthylamide, and N-carbobenzoyl substrates tested, none were hydrolyzed. With the exception of Ca2+, divalent metal ions inhibited proteolysis. Experiments with protease inhibitors demonstrated that 1 mM EDTA inhibited protease activities in culture supernatants by over 90%, indicating that the enzymes were principally of the metalloprotease type.  相似文献   

18.
The influence of cyclic AMP on cartilage degradation was investigated by using phosphodiesterase inhibitors [theophylline and 3-isobutyl-1-methylxanthine (IBMX)], forskolin (which activates the catalytic subunit of adenylate cyclase) and cyclic AMP analogues (dibutyryl and 8-bromo). Breakdown was assessed by quantification of proteoglycans released into the media of 8-day bovine nasal-septum cartilage cultures. Theophylline (1-20 mM), IBMX (0.01-2 mM) and dibutyryl cyclic AMP (0.1-2 mM) had little or no influence on the rate of proteoglycan release from unstimulated (no-endotoxin) cartilages. A small but detectable increase in breakdown was observed with 8-bromo cyclic AMP (0.5-2 mM) and forskolin (50-75 micrograms/ml). To examine potential inhibitory influences of these agents, the cyclic AMP modulators were added to cultures simultaneously treated with Salmonella typhosa endotoxin (12-25 micrograms/ml), a potent stimulator of cartilage degradation. The 3-4-fold stimulation of breakdown by endotoxin was strikingly inhibited by all three classes of cyclic AMP regulators. Optimal inhibition was found at 10-20 mM-theophylline, 1-2 mM-IBMX, 50-75 micrograms of forskolin/ml, 2 mM-dibutyryl cyclic AMP and 2 mM-8-bromo cyclic AMP. Inhibition was shown to be reversible, indicating that cartilages were viable after treatment. Sepharose CL-2B chromatography of proteoglycan products released from treated cartilages showed that the endotoxin-stimulated shift to lower average Mr was significantly prevented by cyclic AMP analogues and phosphodiesterase inhibitors. Together, these results show that agents which increase cyclic AMP inhibit both quantitative and qualitative aspects of endotoxin-mediated cartilage degradation.  相似文献   

19.
Culture of a wild-type strain of Escherichia coli in the presence of cyclic AMP leads to an impairment of uracil uptake. Half maximum inhibition of uracil uptake was observed at 1.5 mM cyclic AMP. The effect seems to be specific since no inhibition was found in cultures supplemented with ATP, ADP or 5'-AMP. Similarly the inhibition was not observed in cultures of a mutant deficient in the cyclic AMP receptor protein. The inhibition in uracil uptake, found in bacteria cultured in the presence of cyclic AMP, is not a consequence of a reduction in the growth rate. On the other hand, this inhibition was observed only in cultures containing glucose or pyruvate as carbon source.  相似文献   

20.
Abstract The fermentation of isoleucine, arginine and isoleucine + arginine by pure and syntrophic cultures of Clostridium sporogenes was investigated. Growth of C. sporogenes on isoleucine, if any, was poor, but some isoleucine was fermented to 2-methylbutyrate and hydrogen. In syntrophic cultures with Methanobacterium formicicum or Methanosarcina barkeri growth was better, and isoleucine was completely fermented, the hydrogen being used for methane production. Pure cultures of C. sporogenes grew on arginine and produced 5-aminovalerate, ornithine and acetate. The reducing equivalents for 5-aminovalerate production from intermediarily formed proline were provided by oxidative conversion of arginine to acetate and by oxidative metabolism of some amino acids present in the yeast extract. However, when isoleucine was available together with arginine in syntrophic cultures of C. sporogenes and M. formicicum , the reducing equivalents for arginine fermentation came mainly from the oxidation of isoleucine (Stickland reaction), and the hydrogen produced in excess served for the reduction of CO2 to methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号