首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), a potent inhibitor of protein kinase C in vitro, phorbol-12-myristate-13-acetate (PMA) did not suppress the thrombin-induced increase of cytosolic Ca2+ concentration in human platelets. The H-7 reversal of the inhibitory action of PMA was also observed in thrombin-induced polyphosphoinositide breakdown by phospholipase C. These results provide additional support to the developing theory that the inhibition of PMA on Ca2+ mobilization and phosphoinositide turnover may be mediated by protein kinase C activation.  相似文献   

2.
Carbachol (Cch), a muscarinic acetylcholine receptor (mAChR) agonist, increases intracellular-free Ca(2+) mobilization and induces mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) phosphorylation in MCF-7 human breast cancer cells. Pretreatment of cells with the selective phospholipase C (PLC) inhibitor U73122, or incubation of cells in a Ca(2+)-free medium did not alter Cch-stimulated MAPK/ERK phosphorylation. Phosphorylation of MAPK/ERK was mimicked by phorbol 12-myristate acetate (PMA), an activator of protein kinase C (PKC), but Cch-evoked MAPK/ERK activation was unaffected by down-regulation of PKC or by pretreatment of cells with GF109203X, a PKC inhibitor. However, Cch-stimulated MAPK/ERK phosphorylation was completely blocked by myristoylated PKC-zeta pseudosubstrate, a specific inhibitor of PKC-zeta, and high doses of staurosporine. Pretreatment of human breast cancer cells with wortmannin or LY294002, selective inhibitors of phosphoinositide 3-kinase (PI3K), diminished Cch-mediated MAPK/ERK phosphorylation. Similar results were observed when MCF-7 cells were pretreated with genistein, a non-selective inhibitor of tyrosine kinases, or with the specific Src tyrosine kinase inhibitor PP2. Moreover, in MCF-7 human breast cancer cells mAChR stimulation induced an increase of protein synthesis and cell proliferation, and these effects were prevented by PD098059, a specific inhibitor of the mitogen activated kinase kinase. In conclusion, analyses of mAChR downstream effectors reveal that PKC-zeta, PI3K, and Src family of tyrosine kinases, but not intracellular-free Ca(2+) mobilization or conventional and novel PKC activation, are key molecules in the signal cascade leading to MAPK/ERK activation. In addition, MAPK/ERK are involved in the regulation of growth and proliferation of MCF-7 human breast cancer cells.  相似文献   

3.
Stimulation of platelets with thrombin leads to rapid degradation of inositol phospholipids, generation of diacylglycerol (DAG) and subsequent activation of protein kinase C (PKC). Previous studies indicated that prior activation of PKC with phorbol myristate acetate (PMA) desensitizes platelets to thrombin stimulation, as indicated by a decreased production of inositol phosphates and decreased Ca2+ mobilization. This suggests that PKC activation generates negative-feedback signals, which limit the phosphoinositide response. To test this hypothesis further, we examined the effects of PKC activators and inhibitors on thrombin-stimulated DAG mass formation in platelets. Pretreatment with PMA abolishes thrombin-stimulated DAG formation (50% inhibition at 60 nM). Pretreatment of platelets with the PKC inhibitors K252a or staurosporine potentiates DAG production in response to thrombin (3-4-fold) when using concentrations required to inhibit platelet PKC (1-10 microM). K252a does not inhibit phosphorylation of endogenous DAG or phosphorylation of a cell-permeant DAG in unstimulated platelets, indicating that DAG over-production is not due to inhibition of DAG kinase. Sphingosine, a PKC inhibitor with a different mechanism of action, also potentiates DAG formation in response to thrombin. Several lines of evidence indicate that DAG formation under the conditions employed occurs predominantly by phosphoinositide (and not phosphatidylcholine) hydrolysis: (1) PMA alone does not elicit DAG formation, but inhibits agonist-stimulated DAG formation; (2) thrombin-stimulated DAG formation is inhibited by neomycin (1-10 mM) but not by the phosphatidate phosphohydrolase inhibitor propranolol; and (3) no metabolism of radiolabelled phosphatidylcholine was observed upon stimulation by thrombin or PMA. These data provide strong support for a role of PKC in limiting the extent of platelet phosphoinositide hydrolysis.  相似文献   

4.
Regulation of the increase in inositol phosphates (IPs) production and intracellular Ca2+ concentration ([Ca2+]i) by protein kinase C (PKC) was investigated in cultured canine aorta smooth muscle cells (ASMCs). Stimulation of ASMCs by 5-hydroxytryptamine (5-HT) led to IPs formation and caused an initial transient [Ca2+]i peak followed by a sustained elevation of [Ca2+]i in a concentration-dependent manner. Pretreatment of ASMCs with phorbol 12-myristate 13-acetate (PMA) for 30 min almost abolished the 5-HT-induced IPs formation and Ca2+ mobilization. This inhibition was reduced after long-term incubating the cells with PMA. Prior treatment of ASMCs with staurosporine or GF109203X, PKC inhibitors, inhibited the ability of PMA to attenuate 5-HT-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. In parallel with the effect of PMA on the 5-HT-induced IP formation and Ca2+ mobilization, the translocation and down-regulation of PKC isozymes were determined by Western blotting with antibodies against different PKC isozymes. The results revealed that treatment of ASMCs with PMA for various times, translocation of PKC-alpha, betaI, betaII, delta, epsilon, theta, and zeta isozymes from the cytosol to the membrane was seen after 5-min, 30-min, 2-h, and 4-h treatment. However, 24-h treatment caused a partial down-regulation of these PKC isozymes. In conclusion, these results demonstrate that translocation of PKC-alpha, betaI, betaII, delta, epsilon, theta, and zeta induced by PMA caused an attenuation of 5-HT-induced IPs accumulation and Ca2+ mobilization in ASMCs.  相似文献   

5.
The mechanism for oxytocin's (OT) stimulation of PGF2alpha secretion from porcine endometrium is not clear, but is thought to involve mobilization of intracellular Ca2+ and subsequent activation of protein kinase C (PKC). This study determined: (1) if mobilization of inositol trisphosphate-sensitive Ca2+ by thapsigargin or activation of PKC by phorbol 12-myristate 13-acetate (PMA) could stimulate PGF2alpha release from luminal epithelial, glandular epithelial and stromal cells of porcine endometrium and (2) if inhibitors of various PKC isotypes could attenuate the ability of OT, thapsigargin and PMA to stimulate PGF2alpha secretion from these cells. Thapsigargin and PMA each stimulated (P < 0.01) PGF2alpha secretion from all three endometrial cell types examined. However, the effects of thapsigargin and PMA were synergistic (P < 0.05) only in stromal cells. Three protein kinase C inhibitors (i.e. G?6976, G?6983 and Ro-31-8220) differentially attenuated (P < 0.05) the ability of OT, thapsigargin and PMA to stimulate PGF2alpha release. These results are consistent with the hypothesis that OT mobilizes Ca2+ to activate a Ca2+-dependent PKC pathway to promote PGF2alpha secretion from porcine endometrial cells. The differing pattern of response to isotype-specific inhibitors of PKC among cell types suggests that distinct PKC isoforms are differentially expressed in luminal epithelial, glandular epithelial and stromal cells.  相似文献   

6.
We examined the effect of phorbol esters on phospholipase C activation in rat brain cortical slices and membranes. There was little effect of concurrent addition of phorbol 12-myristate 13-acetate (PMA) with carbachol on phosphoinositide breakdown due to carbachol over a 1-h incubation of brain slices. However, if slices were preincubated for 3 h with 1 microM PMA or 200 microM sphingosine before addition of carbachol, there was a 35-50% inhibition of phosphoinositide breakdown. There was also a marked loss of protein kinase C (PKC) activity from both cytosol and membranes after a 3-h exposure to PMA. The loss in responsiveness to the muscarinic agonists in slices was not reflected in carbachol-stimulated phospholipase C activation using isolated membranes. However, the decrease in carbachol-induced phosphoinositide breakdown seen in slices after a 3-h exposure to PMA was abolished if the extracellular K+ concentration was elevated from 5.9 to 55mM. Because elevation of the K+ level induces depolarization and increases Ca2+ entry, we examined the effect of ionomycin, a Ca2+ ionophore. Ionomycin potentiated the effects of carbachol on phosphoinositide breakdown but was unable to reverse the effects of a 3-h incubation with PMA. Because apamin, an inhibitor of Ca2(+)-dependent K+ channels, mimicked the effects of exposure to PMA for 3 h, it is possible that these channels are involved in muscarinic cholinergic regulation of phosphoinositide breakdown in rat brain slices. These results support the hypothesis that prolonged PMA treatment in rat brain cortex has no direct effect on phospholipase C activation by muscarinic cholinergic stimulation.  相似文献   

7.
Expression of the COOH-terminal residues 179-330 of the LSP1 protein in the LSP1(+) B-cell line W10 increases anti-IgM- or ionomycin-induced apoptosis, suggesting that expression of this LSP1 truncate (B-LSP1) interferes with a Ca(2+)-dependent step in anti-IgM signaling. Here we show that inhibition of Ca(2+)-dependent conventional protein kinase C (cPKC) isoforms with G?6976 increases anti-IgM-induced apoptosis of W10 cells and that expression of B-LSP1 inhibits translocation of PKCbetaI but not of PKCbetaII or PKCalpha to the plasma membrane. The increased anti-IgM-induced apoptosis is partially reversed by overexpression of PKCbetaI. This shows that the B-LSP1-mediated inhibition of PKCbetaI leads to increased anti-IgM-induced apoptosis. Expression of constitutively active PKCbetaI protein in W10 cells activates the mitogen-activated protein kinase ERK2, whereas expression of B-LSP1 inhibits anti-IgM-induced activation of ERK2, suggesting that anti-IgM-activated PKCbetaI is involved in the activation of ERK2 and that inhibition of ERK2 activation contributes to the increased anti-IgM-induced apoptosis. Pull-down assays show that LSP1 interacts with PKCbetaI but not with PKCbetaII or PKCalpha in W10 cell lysates, while in vitro LSP1 and B-LSP1 bind directly to PKCbetaI. Thus, B-LSP1 is a unique reagent that binds PKCbetaI and inhibits anti-IgM-induced PKCbetaI translocation, leading to inhibition of ERK2 activation and increased apoptosis.  相似文献   

8.
Lipoprotein lipase gene expression in THP-1 cells   总被引:5,自引:0,他引:5  
  相似文献   

9.
Protein kinase C (PKC) exhibits both negative and positive cross-talk with multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) in PC12 cells. PKC effects negative cross-talk by inhibiting the mobilization of intracellular Ca2+ stores and by inhibiting Ca2+ influx through voltage-sensitive Ca2+ channels. In the absence of cross-talk, Ca2+ influx induced by depolarization with 56 mM K+ stimulates CaM kinase and its autophosphorylation and converts up to 50% of the enzyme to a Ca(2+)-independent or autonomous species. Acute treatment with phorbol myristate acetate (PMA) elicits a parallel reduction in depolarization-induced Ca2+ influx and in generation of autonomous CaM kinase. Negative cross-talk also occurs during stimulation of the phosphatidylinositol signaling system with bradykinin, which activates both PKC and CaM kinase. The extent of CaM kinase activation is attenuated by the simultaneous activation of PKC; it is enhanced by prior down-regulation of PKC. PKC also exhibits positive cross-talk with CaM kinase. Submaximal activation of CaM kinase by ionomycin is potentiated by concurrent activation of PKC with PMA. Such PMA treatment is found to increase the level of cytosolic calmodulin. Enhanced activation of CaM kinase by PKC may result from PKC-mediated phosphorylation of calmodulin-binding proteins, such as neuromodulin and MARCKS, and the subsequent increase in the availability of previously bound calmodulin for activation of CaM kinase.  相似文献   

10.
In cultured human 1321N1 astrocytoma cells, muscarinic receptor stimulation leads to phosphoinositide hydrolysis, formation of inositol phosphates, and mobilization of intracellular Ca2+. Treatment of these cells with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) completely blocks the carbachol-stimulated formation of [3H]inositol mono-, bis-, and trisphosphate ( [3H]InsP, [3H]InsP2, and [3H]InsP3). The concentrations of PMA that give half-maximal and 100% inhibition of carbachol-induced [3H]InsP formation are 3 nM and 0.5 microM, respectively. Inactive phorbol esters (4 alpha-phorbol 12,13-didecanoate and 4 beta-phorbol), at 1 microM, do not inhibit carbachol-stimulated [3H]InsP formation. The KD of the muscarinic receptor for [3H]N-methyl scopolamine is unchanged by PMA treatment, while the IC50 for carbachol is modestly increased. PMA treatment also abolishes carbachol-induced 45Ca2+ efflux from 1321N1 cells. The concomitant loss of InsP3 formation and Ca2+ mobilization is strong evidence in support of a causal relationship between these two responses. In addition, our finding that PMA blocks hormone-stimulated phosphoinositide turnover suggests that there may be feedback regulation of phosphoinositide metabolism through the Ca2+- and phospholipid-dependent protein kinase.  相似文献   

11.
Although cross-linking of murine B cell membrane Ig (mIg) has been shown to induce a rapid increase in intracellular free calcium [Ca++)i), both the source and the function of the Ca++ in lymphocyte activation is unclear. Toward elucidation of its function, we investigated the relationship between the initial (Ca++)i response and other cell physiologic changes that occur early after mIg cross-linking, apparently as a linear cascade, leading to increased membrane I-A expression. Results suggest that the (Ca++)i response results from polyphosphoinositol hydrolysis induced by mIg cross-linking. The (Ca++)i response cannot be induced by activation of protein kinase C (PKC) with phorbol diesters (e.g., PMA) or synthetic diacylglycerol (DAG), suggesting that this response precedes the PKC activation. However, inhibition of phosphatidylinositol turnover by exposure of cells to dbcAMP during anti-Ig stimulation significantly inhibits the (Ca++)i response, suggesting that phosphatidylinositol turnover may be causally related to Ca++ mobilization. The ability of exogenous phospholipase C to induce the (Ca++)i response also supports this conclusion. Of the products of mono- and poly-phosphatidylinositol hydrolysis, the inositol phosphates (InsP, InsP2, InsP3) are implicated as promoters of Ca++ mobilization, because exogenous synthetic diacylglycerol is without effect on (Ca++)i. In light of recent evidence obtained with other systems, we suggest that InsP3 is responsible for mIg cross-linking-induced Ca++ mobilization from intracellular stores in B lymphocytes. Both depolarization and increased I-A expression are induced by increasing (Ca++)i with the Ca++ ionophores A23187 and ionomycin. These events can also be induced by the activation of PKC with high doses of PMA. When suboptimal doses of both A23187 and PMA are present, these reagents synergize in the induction of depolarization. This suggests that one role for the initial rise in (Ca++)i is to act with the DAG liberated from PtdIns turnover, possibly by enhancing translocation of cytosolic PKC to the plasma membrane, and thereby promote changes in ion transport that are apparent as a decrease in the membrane potential.  相似文献   

12.
Evidences have been provided by many laboratories that the activation of the NADPH oxidase in neutrophils by formyl-methionyl-leucyl-phenylalanine (FMLP) is strictly linked to a transduction pathway that involves the stimulation, via GTP binding protein, of the phosphoinositide turnover and the increase in [Ca2+]i. The results presented in this paper demonstrate that FMLP can activate the NADPH oxidase by triggering a transduction pathway completely independent of phosphoinositide turnover and Ca2+ changes. In fact: i) Ca2+-depleted neutrophils do not respond to FMLP with the activation of phosphoinositide hydrolysis and NADPH oxidase. Both the responses are restored by the addition of exogenous Ca2+. ii) In Ca2+-depleted neutrophils phorbol-myristate-acetate (PMA) activates the NADPH oxidase. iii) The pretreatment of Ca2+-depleted neutrophils with non stimulatory doses of PMA restores the activation of the NADPH oxidase but not of the turnover of phosphoinositides by FMLP. This priming effect of PMA and the role of this phosphoinositide and Ca2+-independent pathway for the stimulation of the NADPH oxidase by receptors mediated stimuli are discussed.  相似文献   

13.
T Sakai  Y Okano  Y Nozawa  N Oka 《Cell calcium》1992,13(5):329-340
Effects of protein kinase C (PKC) on bradykinin (BK)-induced intracellular calcium mobilization, consisting of rapid Ca2+ release from internal stores and a subsequent sustained Ca2+ inflow, were examined in Fura-2-loaded osteoblast-like MC3T3-E1 cells. The sustained Ca2+ inflow as inferred with Mn2+ quench method was blocked by Ni2+ and a receptor-operated Ca2+ channel blocker SK&F 96365, but not by nifedipine. The short-term pretreatment with phorbol 12-myristate 13-acetate (PMA), inhibited BK-stimulated Ca2+ inflow, and the prior treatment with PKC inhibitors, H-7 or staurosporine, enhanced the initial internal release and reversed the PMA effect. Moreover, 6 h pretreatment with PMA caused similar effect on the BK-induced inflow to that obtained with PKC inhibitors, whereas 24 h pretreatment was necessary to affect the internal release. On the other hand, the translocation and down-regulation of PKC isozymes were examined after PMA treatment of MC3T3-E1 cells by immunoblot analyses of PKCs with the isozyme-specific antibodies. 6 h treatment with PMA induced down-regulation of PKC beta, whereas longer treatment was needed for down-regulation of PKC alpha. Taken together, it was suggested that the BK-induced initial Ca2+ peak and the sustained Ca2+ inflow through the activation of a receptor-operated Ca2+ channel, are differentially regulated by PKC isozymes alpha and beta, respectively, in osteoblast-like MC3T3-E1 cells.  相似文献   

14.
15.
Ligation of the CD3 receptor induces multiple signal transduction events that modify the activation state of the T cell. We have compared two lines that express biologically active CD3 receptors but differ in their biochemical activation pathways during ligation of this receptor. Jurkat cells respond to anti-CD3 with Ca2+ mobilization, PKC activation, induction of protein tyrosine phosphorylation, and activation of newly characterized lymphoid microtubule associated protein-2 kinase (MAP-2K). MAP-2K itself is a 43-kDa phosphoprotein that requires tyrosine phosphorylation for activation. Although ligation of the CD3 receptor in HPB-ALL could stimulate tyrosine phosphorylation of a 59- kDa substrate, there was no associated induction of [Ca2+]i flux, PKC, or MAP-2K activation. A specific PKC agonist, PMA, which bypasses the CD3 receptor, could, however, activate MAP-2K in HPB-ALL cells. This implies that defective stimulation of PKC by the CD3 receptor is responsible for its failure to activate MAP-2K in HPB-ALL. The defect in PKC activation is likely distal to the CD3 receptor as A1F14- failed to activate MAP-2K in HPB-ALL but was effective in Jurkat cells. The stimulatory effect of PMA on MAP-2K activity in HPB-ALL was accompanied by tyrosine phosphorylation of this kinase which implies that PKC may, in some way, regulate tyrosine phosphorylation of MAP-2K. A candidate for this role is pp56lck which underwent posttranslational modification (seen as mobility change on SDS-PAGE) during anti-CD3 and PMA stimulation in Jurkat or PMA treatment in HPB-ALL. There was, in fact, exact coincidence between induction of PKC activity, posttranslational modification of lck and tyrosine phosphorylation/activation of MAP-2K. Lck kinase activity in an immune complex kinase assay was unchanged during PMA treatment. An alternative explanation is that modification of lck may alter its substrate profile. We therefore looked at the previously documented ability of PKC to dissociate lck from the CD4 receptor and found that PMA could reduce the stoichiometry of the lck interaction with CD4 in HPB-ALL and to a lesser extent in Jurkat cells. These results imply the existence of a kinase cascade that is initiated by PKC and, in the course of which, lck and MAP-2K may interact.  相似文献   

16.
We studied the role of protein kinase C (PKC) and protein threonine phosphorylation in the inhibition and stimulation of growth of the protozoan parasite Entamoeba histolytica. PKC was activated after serum deprivation in E. histolytica and during this period proteins became threonine phosphorylated. Conversely, on serum stimulation of serum-deprived cells, PKC activation was rapidly reversed and the threonine phosphorylation of proteins quickly declined. Growth of E. histolytica was not affected by either PKC inhibitors H-7 and GF109203X or by down-regulation of PKC by Phorbol 12-Myristate 13-Acetate (PMA). Interestingly, very low doses of PMA which caused activation of PKC and were unable to down-regulate PKC after 48 h of culture, negatively influenced the growth of E. histolytica. Serine/threonine phosphatase inhibitors Okadaic acid and Calyculin A drastically inhibited growth of E. histolytica. In conclusion, the growth of E. histolytica is not adversely affected by PKC down-regulation. On the contrary, growth inhibition of E. histolytica is associated with activation of Ca(2+), Diacylglycerol (DAG)-dependent PKC, and threo nine phosphorylation of proteins.  相似文献   

17.
The mechanism for oxytocin's (OT) stimulation of PGF(2alpha) secretion from porcine endometrium is not clear, but is thought to involve mobilization of intracellular Ca(2+) and subsequent activation of protein kinase C (PKC). This study determined: (1) if mobilization of inositol trisphosphate-sensitive Ca(2+) by thapsigargin or activation of PKC by phorbol 12-myristate 13-acetate (PMA) could stimulate PGF(2alpha) release from luminal epithelial, glandular epithelial and stromal cells of porcine endometrium and (2) if inhibitors of various PKC isotypes could attenuate the ability of OT, thapsigargin and PMA to stimulate PGF(2alpha) secretion from these cells. Thapsigargin and PMA each stimulated (P < 0.01) PGF(2alpha) secretion from all three endometrial cell types examined. However, the effects of thapsigargin and PMA were synergistic (P < 0.05) only in stromal cells. Three protein kinase C inhibitors (i.e. G?6976, G?6983 and Ro-31-8220) differentially attenuated (P < 0.05) the ability of OT, thapsigargin and PMA to stimulate PGF(2alpha) release. These results are consistent with the hypothesis that OT mobilizes Ca(2+) to activate a Ca(2+)-dependent PKC pathway to promote PGF(2alpha) secretion from porcine endometrial cells. The differing pattern of response to isotype-specific inhibitors of PKC among cell types suggests that distinct PKC isoforms are differentially expressed in luminal epithelial, glandular epithelial and stromal cells.  相似文献   

18.
In adrenal zona glomerulosa cells, calcium entry is crucial for aldosterone production and secretion. This influx is stimulated by increases of extracellular potassium in the physiological range of concentrations and by angiotensin II (Ang II). The high threshold voltage-activated (L-type) calcium channels have been shown to be the major mediators for the rise in cytosolic free calcium concentration, [Ca2+]c, observed in response to a depolarisation by physiological potassium concentrations. Paradoxically, both T- and L-type calcium channels have been shown to be negatively modulated by Ang II after activation by a sustained depolarisation. While the modulation of T-type channels involves protein kinase C (PKC) activation, L-type channel inhibition requires a pertussis toxin-sensitive G protein. In order to investigate the possibility of additional modulatory mechanisms elicited by Ang II on L-type channels, we have studied the effect of PKC activation or tyrosine kinase inhibition. Neither genistein or MDHC, two strong inhibitors of tyrosine kinases, nor the phorbol ester PMA, a specific activator of PKC, affected the Ang II effect on the [Ca2+]c response and on the Ba2+ currents elicited by cell depolarisation with the patch-clamp method. We propose a model describing the mechanisms of the [Ca2+]c modulation by Ang II and potassium in bovine adrenal glomerulosa cells.  相似文献   

19.
CD43 is a constitutively phosphorylated 115-kDa sialoglycoprotein expressed on a variety of blood cells including lymphocytes and monocytes. L10, a mAb directed against CD43, triggers T cell activation and enhances hydrogen peroxide production in monocytes. Activation of mononuclear cells by L10 initiates phosphoinositides hydrolysis, C2+ mobilization, and protein kinase C (PKC) activation. In turn, activated PKC hyperphosphorylates CD43, suggesting a potential role for PKC in the regulation of signaling via CD43. To address this issue, we have analyzed the effect of PKC activation by the tumor promoter PMA on L10-triggered rise in intracellular free Ca2+ concentrations ([Ca2+]i). Treatment of mononuclear cells with PMA profoundly inhibited the increase in [Ca2+]i induced by L10. The inhibition of CD43-mediated signaling by PMA was due, in part, to uncoupling of CD43 from the signal-transducing G protein. This was evidenced by the comparatively modest inhibition by PMA of the increase in [Ca2+]i induced by the direct G protein activator AlF4-. PMA treatment did not affect the surface expression of CD43. However, it induced the hyperphosphorylation of CD43, the extent of which correlated with the inhibition of CD43-mediated increase in [Ca2+]i. Staurosporine, a potent inhibitor of PKC, abrogated the hyperphosphorylation of CD43 and normalized CD43-mediated signaling in PMA-treated cells. Significantly, in the absence of PMA, staurosporine enhanced the rise in [Ca2+]i triggered by L10, suggesting that engagement of CD43 by activating ligands results in feedback inhibition by PKC. It is concluded that activation of PKC inhibits signaling via CD43 by mechanisms involving phosphorylation and uncoupling of CD43 from the signal-transducing apparatus and by distal, post-receptor events.  相似文献   

20.
Ligand stimulation of the platelet-derived growth factor receptor (PDGF-R) results in rapid activation of the receptor tyrosine kinase, stimulation of phosphoinositide hydrolysis, an increase in intracellular free Ca2+ concentration ([Ca2+]i), and, ultimately, cellular proliferation. In a previous study, we demonstrated that staurosporine, a known inhibitor of protein kinase C, blocked PDGF-induced [Ca2+]i increases in Swiss mouse 3T3 fibroblasts by a mechanism that appeared unrelated to inhibition of protein kinase activity (Olsen, R., Melder, D., Seewald, M., Abraham, R., and Powis, G. (1990) Biochem. Pharmacol. 39, 968-972). In the present study, we report that staurosporine inhibits ligand-dependent PDGF-R tyrosine kinase activation in cell-free receptor preparations and in intact Swiss 3T3 cells. At the same concentrations (10(-8)-10(-6) M), staurosporine suppressed both the tyrosine phosphorylation of phospholipase C activity and the hydrolysis of phosphoinositides induced by PDGF stimulation of intact cells. In contrast, guanine nucleotide-binding protein-dependent phospholipase C activation induced by bradykinin or fluoroaluminate anion was relatively insensitive to staurosporine. A preferential inhibitory effect of staurosporine on signal generation by the PDGF-R was indicated by findings that epidermal growth factor receptor (EGF-R) tyrosine kinase activity and EGF-dependent phospholipase C in A-431 carcinoma cells were approximately 100-fold less sensitive to this drug. These data indicate that submicromolar concentrations of staurosporine inhibit PDGF-dependent phosphoinositide hydrolysis and Ca2+ mobilization through a proximal inhibitory effect on ligand-induced activation of the PDGF-R tyrosine kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号