首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferrous-carbon monoxide bound form of cytochrome P450cam (CO-P450cam) has two infrared (IR) CO stretching bands at 1940 and 1932 cm(-1). The former band is dominant (>95% in area) for CO-P450cam free of putidaredoxin (Pdx), while the latter band is dominant (>95% in area) in the complex of CO-P450cam with reduced Pdx. The binding of Pdx to CO-P450cam thus evokes a conformational change in the heme active site. To study the mechanism involved in the conformational change, surface amino acid residues Arg79, Arg109, and Arg112 in P450cam were replaced with Lys, Gln, and Met. IR spectroscopic and kinetic analyses of the mutants revealed that an enzyme that has a larger 1932 cm(-1) band area upon Pdx-binding has a larger catalytic activity. Examination of the crystal structures of R109K and R112K suggested that the interaction between the guanidium group of Arg112 and Pdx is important for the conformational change. The mutations did not change a coupling ratio between the hydroxylation product and oxygen consumed. We interpret these findings to mean that the interaction of P450cam with Pdx through Arg112 enhances electron donation from the proximal ligand (Cys357) to the O-O bond of iron-bound O(2) and, possibly, promotes electron transfer from reduced Pdx to oxyP450cam, thereby facilitating the O-O bond splitting.  相似文献   

2.
Globular proteins in the native state are assumed to behave as continuous elastic spheres in the low frequency breathing motions. Reasonable values of Young's modulus E = 10(11) dyne/cm2 and the radius of the sphere ro = 20 A, yield a wave number of 26 cm-1 for the fundamental vibration of the sphere. The peak at around 30 cm-1 in the laser Raman spectra of native alpha-chymotrypsin and pepsin observed by Brown et al. might be assigned to the breathing motion which the native proteins undergo as continuous elastic bodies.  相似文献   

3.
Fourier transform infrared difference spectroscopy has been used to study the effect of water on the conformation of bacteriorhodopsin. The infrared spectra as a function of water content show a conformational change at about 0.06 g H2O/g bacteriorhodopsin. By an interference method the thickness of the sample was measured and shows similar behavior as a function of water content. This study gives insight into the process of water absorption by purple membrane. The observations are in good agreement with those found for other proteins.Abbreviations IR infrared - FTIR Fourier transform IR  相似文献   

4.
5.
C H Barlow  P I Ohlsson  K G Paul 《Biochemistry》1976,15(10):2225-2229
Infrared difference spectra, FeIIICO vs. FeIII of horseradish peroxidase isoenzymes A2 and C were recorded from 2000 to 1800 cm-1. Under alkaline conditions, pH 9, both isoenzymes exhibit two CO stretching bands, at 1938 and 1925 cm-1 for A2 and at 1933 and 1929 cm-1 for C. As the pH is lowered the low-frequency band for each isoenzyme decreases in intensity with a concommitant appearance and increase in intensity of a band at 1906 and 1905 cm-1 for the A2 and C isoenzymes, respectively. These changes conform to pK values of 6.7 for the A2 and 8.8 for the C isoenzymes of horseradish peroxidase. The interpretation of the infrared results was simplified by the observation that a linear relationship exists between the redox potential, Em7, for the FeIII/FeII system vs. the infrared CO stretching frequency, vCO, for cytochrome a3, hemoglobin, myoglobin, and cytochrome P-450 cam with substrate. This relationship suggests that the primary force altering vCO in these heme proteins is a variation in electron density at the heme iron and not direct protein interactions with the CO ligand. The horseradish peroxidase infrared bands in the 1930-cm-1 region correlate well with this relationship. The large deviation of the 1905-cm-1 band from the linear relationship and its dependence upon hydrogen ion concentration are consistent with horseradish peroxidase having a single CO binding site which can hold in two geometries, one of which contains an amino acid moiety capable of forming a hydrogen bond to the carbonyl oxygen.  相似文献   

6.

Background

Many proteins undergo extensive conformational changes as part of their functionality. Tracing these changes is important for understanding the way these proteins function. Traditional biophysics-based conformational search methods require a large number of calculations and are hard to apply to large-scale conformational motions.

Results

In this work we investigate the application of a robotics-inspired method, using backbone and limited side chain representation and a coarse grained energy function to trace large-scale conformational motions. We tested the algorithm on four well known medium to large proteins and we show that even with relatively little information we are able to trace low-energy conformational pathways efficiently. The conformational pathways produced by our methods can be further filtered and refined to produce more useful information on the way proteins function under physiological conditions.

Conclusions

The proposed method effectively captures large-scale conformational changes and produces pathways that are consistent with experimental data and other computational studies. The method represents an important first step towards a larger scale modeling of more complex biological systems.
  相似文献   

7.
Antibody-induced conformational changes in proteins   总被引:6,自引:0,他引:6  
  相似文献   

8.
K Nitta  S Sugai 《Biopolymers》1972,11(9):1893-1901
A power series method was applied to solve the Poisson-Boltzmann equation for the spherical polyelectrolyte model and numerical calculation with an electronic computer was performed to obtain surface electric potential on rigid globular proteins. Deviation from the ideal linear relationship in Linderstrom-Lang's plot was found to become noticeable as the surface charge density and the radius of protein increases and ionic strength decreases. The calculated surface potential was compared with potentiometric titration data of several proteins whose radii have been analyzed. Assuming the radius of the counterions to be equal to about 1.0 Å, the data for phenolic groups in ribonuclease and for carboxyl groups in conalbumin were interpreted. Reversible intramolecular transformation was found for α-lactalbumin by comparing the present results with the potentiometric titration data for carboxyl groups. The molecular size of each protein was discussed.  相似文献   

9.
10.
Fourier transform infrared spectroscopy was used to investigate ligand binding and conformational changes in the Ca2(+)-ATPase of sarcoplasmic reticulum during the catalytic cycle. The ATPase reaction was started in the infrared sample by release of ATP from the inactive, photolabile ATP derivative P3-1-(2-nitro)phenylethyladenosine 5'-triphosphate (caged ATP). Absorption spectroscopy in the visible spectral region using the Ca2(+)-sensitive dye Antipyrylazo III ensured that the infrared samples were able to transport Ca2+ in spite of their low water content, which is required for mid-infrared measurements (1800-950 cm-1). Small, but characteristic and highly reproducible infrared absorbance changes were observed upon ATP release. These infrared absorbance changes exhibit different kinetic properties. Comparison with model compound infrared spectra indicates that they are related to photolysis of caged ATP, hydrolysis of ATP in consequence of ATPase activity and to molecular changes in the active ATPase. The absorbance changes due to alterations in the ATPase were observed mainly in the region of Amide I and Amide II protein absorbance and presumably reflect the molecular processes upon phosphoenzyme formation. Since the absorbance changes were small compared to the overall ATPase absorbance, no major rearrangement of ATPase conformation as the result of catalysis could be detected.  相似文献   

11.
12.
A study was made of the medium pH influence on structural states of platelets by optical methods. Within the pH range (6-8), two pH induced reversible changes of platelet state were observed. A conclusion is made that the structural rearrangements in platelets induced in the medium by changes in hydrogen ion concentration may involve some rearrangements in platelet proteins, and thus acting as a factor regulating platelet function.  相似文献   

13.
14.
The data on medium-scale fluctuation of globular proteins revealed by hydrogen exchange, proteolytic degradation and 1H NMR are considered. It is shown that the main features of those conformational transitions including their cooperativity can be described within the model that is based on mobile equilibrium defects of a solid characterized by the integrity of properties of the polymeric monocrystal and the molecular organic crystal. The extent of the fluctuational motility of the protein structure is regulated by strain energy. The functional isomerization of the protein is realized as generalized collective fluctuation induced by destabilization of the structure. The hydration of the backbone may play an important role providing the conformational rigidity of the protein, the extent of hydration being varied upon temperature changes and in the presence of organic co-solvents. Unlike the solid, the liquid-like state of the protein globula is characterized by high fluctuational motility and very narrow distribution of probabilities of medium-scale fluctuations.  相似文献   

15.
The statistical thermodynamic model of protein structure proposed in paper I is developed with special attention to the hydrophobic interaction. Calorimetric measurements of the thermal denaturation of five globular proteins, ribonuclease A, lysozyme, alpha-chymotrypsin, cytochrome c, and myoglobin, are quantitatively analyzed using the model. The thermodynamic parameters obtained by the least squares method reflect the global, average properties of proteins and are in good agreement with the expected values estimated from experimental and theoretical studies for model peptides. The average bond energy epsilon is well related to the tertiary structure of each protein. However, the difference in the parameters between different proteins is not observed for the cooperative energy ZJ and the chain entropy alpha. The individuality of a protein as far as its structural stability is concerned, is mainly reflected by the parameter gamma specifying the hydrophobic nature of a protein. The model is further applied in the analysis of several aspects of the structural stability of globular proteins. Denaturation induced by denaturants, salts, and pH are also explained by the model in a unified manner.  相似文献   

16.
Calcium binding to proteins containing the 'EF-hand' structural motif regulates a variety of biochemical processes including muscle contraction. Techniques such as protein crystallography, site-directed mutagenesis and domain transplantation experiments are being used to unravel the conformational changes induced by calcium binding.  相似文献   

17.
Hydrogen bonding in globular proteins.   总被引:17,自引:0,他引:17  
A global census of the hydrogen bonds in 42 X-ray-elucidated proteins was taken and the following demographic trends identified: (1) Most hydrogen bonds are local, i.e. between partners that are close in sequence, the primary exception being hydrogen-bonded ion pairs. (2) Most hydrogen bonds are between backbone atoms in the protein, an average of 68%. (3) All proteins studied have extensive hydrogen-bonded secondary structure, an average of 82%. (4) Almost all backbone hydrogen bonds are within single elements of secondary structure. An approximate rule of thirds applies: slightly more than one-third (37%) form i----i--3 hydrogen bonds, almost one-third (32%) form i----i--4 hydrogen bonds, and slightly less than one-third (26%) reside in paired strands of beta-sheet. The remaining 5% are not wholly within an individual helix, turn or sheet. (5) Side-chain to backbone hydrogen bonds are clustered at helix-capping positions. (6) An extensive network of hydrogen bonds is present in helices. (7) To a close approximation, the total number of hydrogen bonds is a simple function of a protein's helix and sheet content. (8) A unique quantity, termed the reduced number of hydrogen bonds, is defined as the maximum number of hydrogen bonds possible when every donor:acceptor pair is constrained to be 1:1. This quantity scales linearly with chain length, with 0.71 reduced hydrogen bond per residue. Implications of these results for pathways of protein folding are discussed.  相似文献   

18.
19.
20.
Phosphorescence spectroscopy on mouse myeloma IgA J539 in rigid solution at 77K revealed the type of anomalous short-lived component in the tryptophan decay originally observed with lysozyme (Churchich, J.E., 1966. Biochim. Biophys. Acta. 120:406-412) and seen in a large number of Bence Jones proteins (Longworth, J.W., C.L. McLaughlin, and A. Solomon. 1976. Biochemistry. 15:2953-2958). The decay time of the anomalous component that results from the interaction between tryptophan side chains and disulfide linkages in proteins was observed to significantly lengthen in J539 in response to binding of a galactan antigen. With hen egg-white lysozyme in which the type of fluorescence enhancement on ligand binding seen with J539 has also been observed, phosphorescence measurements revealed a similar lengthening of the decay time of the disulfide-induced anomalous component in the tryptophan decay. These perturbations are interpreted as ligand-induced changes to the tryptophan-disulfide proximities that have been shown to exist in these structures. Given the short-range nature of the disulfide perturbation (see following article) the observations suggest, in particular when combined with x-ray crystallographic data, that phosphorescence decay-time measurements of disulfide perturbations can serve as a sensitive spectroscopic indicator of subtle conformational changes in immunoglobulins and other tryptophan-disulfide containing proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号